Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIANG X Z,HUANG Z Y,AI F M,et al. Dynamic model by transfer function and parameter determination method of plate fin heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):154-162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0202
Citation: LIANG X Z,HUANG Z Y,AI F M,et al. Dynamic model by transfer function and parameter determination method of plate fin heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):154-162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0202

Dynamic model by transfer function and parameter determination method of plate fin heat exchanger

doi: 10.13700/j.bh.1001-5965.2022.0202
More Information
  • Corresponding author: E-mail:liangxingzhuang@126.com
  • Received Date: 01 Apr 2022
  • Accepted Date: 23 Apr 2022
  • Publish Date: 10 May 2022
  • A fast and efficient dynamic simulation model of heat exchangers is urgently needed to meet the requirements of the advanced control system design for the integrated environmental control and thermal management system of aircraft. In this paper, a dynamic model by transfer function matrix, composed of two delay links and four first-order inertia links, is proposed for plate-fin heat exchangers. The identification method for the calculation formulas of thermal resistance based on the efficiency of the heat exchanger is given, which solves the issue of setting two key parameters in the model. The calculation formulas of four-time constants in the simplified model are derived according to the mechanism of the heat exchanger by using the Laplace transform. Taking an air-liquid plate-fin heat exchanger as the research object, the new dynamic simulation model is built in Simulink software, and compared with the mechanism model built in AMESim software. The results show that both models have similar dynamic responses of the outlet temperature at both flow sides with step change of inlet temperature or flow rate. Under four working conditions, the highest steady-state variations of the air and cooling water outlet temperatures are 0.034 ℃ and 0.029 ℃, respectively. The maximum dynamic relative deviation of airflow outlet temperature is 9.27% with a step change of the cooling water flow rate. The maximum dynamic relative deviation of cooling water flow outlet temperature is 7.03% with a step change of the airflow rate.

     

  • loading
  • [1]
    WANG J X, LI Y Z, LIU X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2): 1-27. doi: 10.1016/j.cja.2020.06.021
    [2]
    DEPPEN T O, HEY J E, ALLEYNE A G, et al. A model predictive framework for thermal management of aircraft[C]//Proceedings of the ASME 8th Annual Dynamic Systems and Control Conference. New York: ASME, 2016.
    [3]
    ROETZEL W, XUAN Y. Dynamic behaviour of heat exchangers[M]. Southampton: WIT Press/Computational Mechanics Publications, 1999.
    [4]
    冷伟, 房德山, 徐治皋, 等. 对单相换热器集总参数模型动态初始负偏移的机理分析[J]. 热能动力工程, 2001, 16(3): 287-289. doi: 10.3969/j.issn.1001-2060.2001.03.015

    LENG W, FANG D S, XU Z G, et al. An analysis of the mechanism governing the dynamic and initial negative deviation of a lumped parameter model for a single-phase heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2001, 16(3): 287-289(in Chinese). doi: 10.3969/j.issn.1001-2060.2001.03.015
    [5]
    宋俊虓, 袁修干, 林贵平. 某种叉流板翅式热交换器动态性能的计算[J]. 北京麻豆精品秘 国产传媒学报, 1999, 25(5): 558-560. doi: 10.3969/j.issn.1001-5965.1999.05.017

    SONG J X, YUAN X G, LIN G P. Transient performances calculation of a gas-to-gas crossflow heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 558-560 (in Chinese). doi: 10.3969/j.issn.1001-5965.1999.05.017
    [6]
    解增忠, 张俊峰, 罗雄麟. 原油换热网络的动态建模与仿真[C]//第九届全国化学工艺年会. 北京: 中国石化出版社, 2005: 1198-1206.

    XIE Z Z, ZHANG J F, LUO X L. Dynamic modeling and simulation of crude oil heat exchanger networks[C]//Proceedings of the 9th National Chemical Technology Annual Meeting. Beijing: China Petrochemical Press, 2005: 1198-1206(in Chinese).
    [7]
    ORAVEC J, BAKOŠOVÁ M, TRAFCZYNSKI M, et al. Robust model predictive control and PID control of shell-and-tube heat exchangers[J]. Energy, 2018, 159: 1-10. doi: 10.1016/j.energy.2018.06.106
    [8]
    CHEN M H, SUN X D, CHRISTENSEN R N, et al. Dynamic behavior of a high-temperature printed circuit heat exchanger: Numerical modeling and experimental investigation[J]. Applied Thermal Engineering, 2018, 135: 246-256. doi: 10.1016/j.applthermaleng.2018.02.051
    [9]
    HEY J E, HODSON S L, YAZAWA K, et al. Experimental characterization of dynamic heat exchanger behavior[J]. International Journal of Heat and Mass Transfer, 2018, 121: 933-942. doi: 10.1016/j.ijheatmasstransfer.2017.12.135
    [10]
    SANGI R, MÜLLER D. Dynamic modelling and simulation of a slinky-coil horizontal ground heat exchanger using Modelica[J]. Journal of Building Engineering, 2018, 16: 159-168. doi: 10.1016/j.jobe.2018.01.005
    [11]
    NASH A L, BADITHELA A, JAIN N. Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes[J]. Applied Energy, 2017, 195: 877-889. doi: 10.1016/j.apenergy.2017.03.092
    [12]
    AGARWAL A, B M O, PITSO I. Numerical analysis and performance enhancement of compact heat exchanger using computational fluid dynamics[J]. Journal of Engineering Research, 2021, 9: 15503.
    [13]
    GONG M J, PENG M J, ZHU H S. Research of multiple refined degree simulating and modeling for high pressure feed water heat exchanger in nuclear power plant[J]. Applied Thermal Engineering, 2018, 140: 190-207. doi: 10.1016/j.applthermaleng.2018.05.005
    [14]
    FRATCZAK M, NOWAK P, CZECZOT J, et al. Simplified dynamical input-output modeling of plate heat exchangers-case study[J]. Applied Thermal Engineering, 2016, 98: 880-893. doi: 10.1016/j.applthermaleng.2016.01.004
    [15]
    WANG Y R, YOU S J, ZHENG W D, et al. State space model and robust control of plate heat exchanger for dynamic performance improvement[J]. Applied Thermal Engineering, 2018, 128: 1588-1604. doi: 10.1016/j.applthermaleng.2017.09.120
    [16]
    ROMIE F E. Transient response of gas-to-gas crossflow heat exchangers with neither gas mixed[J]. Journal of Heat Transfer, 1983, 105(3): 563-570. doi: 10.1115/1.3245622
    [17]
    WHALLEY R, EBRAHIMI K M. Heat exchanger dynamic analysis[J]. Applied Mathematical Modelling, 2018, 62: 38-50. doi: 10.1016/j.apm.2018.04.024
    [18]
    GVOZDENAC D. Analytical solution of dynamic response of heat exchanger[M]//MITROVIĆ J. Heat exchangers: basics design applications. London: Intechopen, 2012: 53-78.
    [19]
    AL-DAWERY S K, ALRAHAWI A M, AL-ZOBAI K M. Dynamic modeling and control of plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24): 6873-6880. doi: 10.1016/j.ijheatmasstransfer.2012.06.094
    [20]
    ZAHID K, PATEL R, MUJTABA I. Development of a dynamic fouling model for a heat exchanger[J]. Chemical Engineering Transactions, 2016, 52: 1135-1140.
    [21]
    YIN J, JENSEN M K. Analytic model for transient heat exchanger response[J]. International Journal of Heat and Mass Transfer, 2003, 46(17): 3255-3264. doi: 10.1016/S0017-9310(03)00118-2
    [22]
    GAO T Y, GEER J, SAMMAKIA B. Development and verification of compact transient heat exchanger models using transient effectiveness methodologies[J]. International Journal of Heat and Mass Transfer, 2015, 87: 265-278. doi: 10.1016/j.ijheatmasstransfer.2015.03.091
    [23]
    PEARSON J. EASY5 user guide[Z]. Chicago: Boeing Company, 2005: 265-278.
    [24]
    张一鸣, 袁宁, 陈玉春. 回热循环微燃机中换热器计算模型与仿真研究[J]. 燃气轮机技术, 2012, 25(1): 38-43. doi: 10.3969/j.issn.1009-2889.2012.01.008

    ZHANG Y M, YUAN N, CHEN Y C. Studies on calculation model and simulation of the heat exchanger in micro-turbine[J]. Gas Turbine Technology, 2012, 25(1): 38-43(in Chinese). doi: 10.3969/j.issn.1009-2889.2012.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(1035) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return