| Citation: | WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0741 |
As a highly complex thermal machinery, the prognosis of the remaining useful life (RUL) of an aero-engine is often used as an important guarantee to improve safety and economy. In order to increase the engine’s remaining usable life prediction accuracy, a strategy based on stacked sparse autoencoders (SSAE) and similarity matching is proposed in this study. Firstly, Spearman’s rank correlation coefficient (SRCC) is utilized as a fitness function and optimizes the candidate set of fusion parameters through a genetic algorithm (GA). The SSAE fuses the optimal parameter set in order to generate the feature comprehensive index. The results of the life prediction are then obtained by using the similarity matching approach to search the history database worldwide for the best matching trajectory. Finally, the C-MAPSS dataset published by the National Aeronautics and Space Administration (NASA) is obtained to verify the validity of the fusion index and method.
| [1] |
KORDESTANI M, SAIF M, ORCHARD M E, et al. Failure prognosis and applications—A survey of recent literature[J]. IEEE Transactions on Reliability, 2021, 70(2): 728-748. doi: 10.1109/TR.2019.2930195
|
| [2] |
PENG Y Z, WANG Y, ZI Y Y. Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 822-832. doi: 10.1109/TII.2018.2810284
|
| [3] |
ELLEFSEN A L, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183: 240-251.
|
| [4] |
ZIO E. Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice[J]. Reliability Engineering & System Safety, 2022, 218: 108119.
|
| [5] |
HU Y, MIAO X W, SI Y, et al. Prognostics and health management: A review from the perspectives of design, development and decision[J]. Reliability Engineering & System Safety, 2022, 217: 108063.
|
| [6] |
LI H, ZHAO W, ZHANG Y X, et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113. doi: 10.1016/j.asoc.2020.106113
|
| [7] |
SUN W J, ZHAO R, YAN R Q, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359. doi: 10.1109/TII.2017.2672988
|
| [8] |
EL-THALJI I, JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 252-272. doi: 10.1016/j.ymssp.2015.02.008
|
| [9] |
谭治学, 钟诗胜, 林琳. 多源数据融合的民航发动机修后性能预测[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(6): 1106-1113. doi: 10.13700/j.bh.1001-5965.2018.0557
TAN Z X, ZHONG S S, LIN L. Commercial aircraft engine post-repairing performance prediction based on fusion of multisource data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1106-1113(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0557
|
| [10] |
MUNEER A, TAIB S M, NASEER S, et al. Data-driven deep learning-based attention mechanism for remaining useful life prediction: Case study application to turbofan engine analysis[J]. Electronics, 2021, 10(20): 2453. doi: 10.3390/electronics10202453
|
| [11] |
赵洪利, 张猛. 基于随机维纳过程的航空发动机性能衰退研究[J]. 推进技术, 2021, 42(3): 488-494. doi: 10.13675/j.cnki.tjjs.190632
ZHAO H L, ZHANG M. Performance degradation of aeroengines based on stochastic Wiener process[J]. Journal of Propulsion Technology, 2021, 42(3): 488-494(in Chinese). doi: 10.13675/j.cnki.tjjs.190632
|
| [12] |
杜方舟, 孙有朝, 郭媛媛, 等. 基于数据的航空发动机排气温度裕度及剩余寿命计算方法[J]. 航空动力学报, 2020, 35(11): 2456-2464. doi: 10.13224/j.cnki.jasp.2020.11.023
DU F Z, SUN Y C, GUO Y Y, et al. Calculation method of aero-engine exhaust gas temperature margin and remaining life based on data[J]. Journal of Aerospace Power, 2020, 35(11): 2456-2464(in Chinese). doi: 10.13224/j.cnki.jasp.2020.11.023
|
| [13] |
赵洪利, 陈天铭, 郑涅. 基于特征融合多阶段相似的发动机寿命预测[J]. 系统工程与电子技术, 2021, 43(5): 1430-1436. doi: 10.12305/j.issn.1001-506X.2021.05.33
ZHAO H L, CHEN T M, ZHENG N. Engine life prediction based on multi-stage similarity of comprehensive index[J]. Systems Engineering and Electronics, 2021, 43(5): 1430-1436(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.05.33
|
| [14] |
李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. doi: 10.3969/j.issn.1001-506X.2020.07.28
LI J F, CHEN Y X, XIANG H C, et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.07.28
|
| [15] |
李杰, 贾渊杰, 张志新, 等. 基于融合神经网络的航空发动机剩余寿命预测[J]. 推进技术, 2021, 42(8): 1725-1734. doi: 10.13675/j.cnki.tjjs.200792
LI J, JIA Y J, ZHANG Z X, et al. Remaining useful life prediction of aeroengine based on fusion neural network[J]. Journal of Propulsion Technology, 2021, 42(8): 1725-1734(in Chinese). doi: 10.13675/j.cnki.tjjs.200792
|
| [16] |
洪骥宇, 王华伟, 倪晓梅. 基于降噪自编码器的航空发动机性能退化评估[J]. 航空动力学报, 2018, 33(8): 2041-2048. doi: 10.13224/j.cnki.jasp.2018.08.028
HONG J Y, WANG H W, NI X M. Assessment of performance degradation for aero-engine based on denoising autoencoder[J]. Journal of Aerospace Power, 2018, 33(8): 2041-2048(in Chinese). doi: 10.13224/j.cnki.jasp.2018.08.028
|
| [17] |
房友龙, 贺星, 刘东风, 等. 燃气轮机健康状态组合法综合评价[J]. 推进技术, 2020, 41(8): 1903-1913. doi: 10.13675/j.cnki.tjjs.190336
FANG Y L, HE X, LIU D F, et al. Combinatorial comprehensive assessment of gas turbine health condition[J]. Journal of Propulsion Technology, 2020, 41(8): 1903-1913(in Chinese). doi: 10.13675/j.cnki.tjjs.190336
|
| [18] |
刘渊, 余映红, 田彦云, 等. 航空发动机排气温度基线建模新方法研究[J]. 推进技术, 2022, 43(4): 16-25. doi: 10.13675/j.cnki.tjjs.200511
LIU Y, YU Y H, TIAN Y Y, et al. Investigation on new method for baseline modelling of aeroengine exhaust gas temperature[J]. Journal of Propulsion Technology, 2022, 43(4): 16-25(in Chinese). doi: 10.13675/j.cnki.tjjs.200511
|
| [19] |
ZHANG Q, TSE P W T, WAN X, et al. Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory[J]. Expert Systems with Applications, 2015, 42(5): 2353-2360. doi: 10.1016/j.eswa.2014.10.041
|
| [20] |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proceeding of the 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
|
| [21] |
彭开香, 皮彦婷, 焦瑞华, 等. 航空发动机的健康指标构建与剩余寿命预测[J]. 控制理论与应用, 2020, 37(4): 713-720.
PENG K X, PI Y T, JIAO R H, et al. Health indicator construction and remaining useful life prediction for aircraft engine[J]. Control Theory & Applications, 2020, 37(4): 713-720(in Chinese).
|