Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG L,ZENG T H,REN Z F,et al. Analysis of heat load and bleed air schedule for hot air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2660-2668 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0710
Citation: WANG L,ZENG T H,REN Z F,et al. Analysis of heat load and bleed air schedule for hot air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2660-2668 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0710

Analysis of heat load and bleed air schedule for hot air anti-icing system

doi: 10.13700/j.bh.1001-5965.2021.0710
More Information
  • Corresponding author: E-mail:buxueqin@cq5520.com
  • Received Date: 24 Nov 2021
  • Accepted Date: 27 Mar 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 08 Apr 2022
  • The design of an aircraft wing anti-icing system mainly includes the anti-icing heat load calculation, piccolo tube design, anti-icing cavity design, and anti-icing system verification. This paper introduces the first part of a series study in this respect. With an aircraft wing as an example, the heat load and the runback water evaporation rate are analyzed based on the calculation of the wing anti-icing heat load, and the demand of the bleed air for anti-icing is then obtained. Furthermore, a bleed air schedule for anti-icing varying with altitude is proposed, and severe conditions for the anti-icing system design are determined. The Euler-Euler two-phase flow method is used to calculate the water droplet movement and impingement characteristics on the wing surface. The energy balance equation of the wing surface considering the phase change of runback water is then established, and the anti-icing heat load and evaporation rate of the wing surface are obtained. The results show that the heat load increases approximately linearly with the surface temperature in the range of 2~15 ℃ under the same flight and icing condition. To meet the anti-icing requirements, the design value of the surface temperature corresponding to the lower altitude is increased. The bleed air schedule for anti-icing varying with altitude is divided into three stages: the hot air flow flux is 0.91 kg/s when the altitude is less than 18356 ft, 0.59 kg/s when the altitude is higher than 21998 ft and linearly interpolated when the altitude is in between 18356 and 21998 ft. The results of this study provide valuable insight into the design and verification of the piccolo tube of hot air anti-icing systems.

     

  • loading
  • [1]
    裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审组, 1985.

    QIU X G, HAN F H. Aircraft anti-icing system [M]. Beijing: Editing Group of Aviation Teaching Materials, 1985(in Chinese).
    [2]
    DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 3702-3707. doi: 10.1016/j.ijheatmasstransfer.2010.04.021
    [3]
    OLSEN W, SHAW R, NEWTON J. Ice shapes and the resulting drag increase for a NACA 0012 airfoil[C]//Proceedings of the 22nd Aerospace Sciences Meeting. Reston: AIAA, 1984.
    [4]
    CORTINAS J V Jr, BERNSTEIN B C, ROBBINS C C, et al. An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90[J]. Weather and Forecasting, 2004, 19(2): 377-390. doi: 10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2
    [5]
    JONES S, REVELEY M, EVANS J K, et al. Subsonic aircraft safety icing study: NASA/TM-2008-215107 [R]. Washington, D. C.: NASA, 2008
    [6]
    郁嘉, 卜雪琴, 林贵平, 等. 非结冰气象条件下机翼热气防冰系统数值模拟[J]. 空气动力学学报, 2016, 34(5): 562-567.

    YU J, BU X Q, LIN G P, et al. Numerical simulation of a wing hot air anti-icing system in dry air conditions[J]. Acta Aerodynamica Sinica, 2016, 34(5): 562-567(in Chinese).
    [7]
    PAPADAKIS M, WONG S H, YEONG H W, et al. Icing tests of a wing model with a hot-air ice protection system[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010.
    [8]
    卜雪琴, 郁嘉, 林贵平, 等. 机翼热气防冰系统设计[J]. 北京麻豆精品秘 国产传媒学报, 2010, 36(8): 927-930.

    BU X Q, YU J, LIN G P, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930(in Chinese).
    [9]
    ROSERO J A, ORTEGA J A, ALDABAS E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3): 3-9. doi: 10.1109/MAES.2007.340500
    [10]
    DOMINGOS R, PAPADAKIS M, ZAMORA A. Computational methodology for bleed air ice protection system parametric analysis[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010.
    [11]
    倪章松, 刘森云, 张军, 等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报, 2021, 36(1): 8-14.

    NI Z S, LIU S Y, ZHANG J, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power, 2021, 36(1): 8-14(in Chinese).
    [12]
    管宁. 三维机翼防冰热载荷的数值模拟[D]. 南京: 南京麻豆精品秘 国产传媒, 2007.

    GUAN N. Numerical simulation of anti-icing thermal loads on a 3D airfoil[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
    [13]
    卜雪琴, 郁嘉, 林贵平. 一种热气防冰系统的数值仿真[J]. 计算机仿真, 2010, 27(9): 40-43.

    BU X Q, YU J, LIN G P. Numerical simulation of an airfoil hot-air anti-icing system[J]. Computer Simulation, 2010, 27(9): 40-43(in Chinese).
    [14]
    赵勇, 杨新亮. 飞机水平尾翼水滴撞击特性及防冰热载荷计算[J]. 航空动力学报, 2012, 27(11): 2401-2407.

    ZHAO Y, YANG X L. Impingement characteristics and anti-icing heat load calculation of certain tailplane[J]. Journal of Aerospace Power, 2012, 27(11): 2401-2407(in Chinese).
    [15]
    林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京麻豆精品秘 国产传媒出版社, 2016.

    LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016 (in Chinese).
    [16]
    MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. doi: 10.2514/8.2520
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(430) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return