Volume 51 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
TANG W T,LI B,JI M Q. Lightweight neural network design for infrared small ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2394-2403 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0747
Citation: TANG W T,LI B,JI M Q. Lightweight neural network design for infrared small ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2394-2403 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0747

Lightweight neural network design for infrared small ship detection

doi: 10.13700/j.bh.1001-5965.2024.0747
Funds:

National Natural Science Foundation of China (62171253); Young Elite Scientists Sponsorship Program by CAST (2022QNRC001); The Open Fund (WDZC20255290411)

More Information
  • Corresponding author: E-mail:jimengqi@cq5520.com
  • Received Date: 16 Oct 2024
  • Accepted Date: 22 Nov 2024
  • Available Online: 28 Feb 2025
  • Publish Date: 26 Feb 2025
  • A lightweight neural network design method is proposed to efficiently represent small ships in infrared remote sensing images. To improve the representation effect of infrared dim and small targets, a method for simulating the visual receptive field adjustment mechanism that incorporates multi-scale receptive field perception and selection processes is proposed. This method is inspired by the visual attention-driven receptive field adjustment mechanism. A lightweight feature selection operator is devised to enhance the receptive field selection, and feature reuse and convolution kernel decomposition are used to optimize the multi-scale receptive field perception process in order to further increase efficiency. Experimental results on an infrared dim and small ship detection dataset show that the network detection accuracy increased by 2%, with a reduction of 2.3×106 parameters and 9.1×109 computations compared to general lightweight networks. In complex scenarios with similar ground interference, this method effectively reduces false alarms and suppresses missed detections.

     

  • loading
  • [1]
    田祥瑞, 贾茚钧, 罗欣, 等. 基于嵌入式平台的航拍目标智能识别[J]. 计算机测量与控制, 2022, 30(11): 153-160.

    TIAN X R, JIA Y J, LUO X, et al. Target intelligent recognition of aerial photography images based on embedded platform[J]. Computer Measurement & Control, 2022, 30(11): 153-160(in Chinese).
    [2]
    陈立群, 邹旭, 张磊, 等. 基于国产商用器件的星载智能目标检测技术[J]. 航空学报, 2023, 44(S2): 728860.

    CHEN L Q, ZOU X, ZHANG L, et al. Spaceborne intelligent target detection technology based on domestic commercial devices[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860(in Chinese).
    [3]
    韩永赛, 马时平, 何林远, 等. 改进的深度神经网络下遥感机场区域目标检测[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(7): 1470-1480.

    HAN Y S, MA S P, HE L Y, et al. Regional object detection of remote sensing airport based on improved deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1470-1480(in Chinese).
    [4]
    王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(6): 1184-1191.

    WANG X K, JIANG H X, LIN K Y. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184-1191(in Chinese).
    [5]
    张冬冬, 王春平, 付强. 基于anchor-free的光学遥感舰船关重部位检测算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(4): 1365-1374.

    ZHANG D D, WANG C P, FU Q. Ship’s critical part detection algorithm based on anchor-free in optical remote sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1365-1374(in Chinese).
    [6]
    王殿伟, 胡里晨, 房杰, 等. 基于改进Double-Head RCNN的无人机航拍图像小目标检测算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(7): 2141-2149.

    WANG D W, HU L C, FANG J, et al. Small target detection algorithm based on improved Double-Head RCNN for UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2141-2149(in Chinese).
    [7]
    陈金林, 吴一全, 苑玉彬. 无人机视角下目标检测的YOLO系列算法研究进展[J/OL]. 北京麻豆精品秘 国产传媒学报, 2024: 1-33. [2024-05-29]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJHK20240822002&dbname=CJFD&dbcode=CJFQ.

    CHEN J L, WU Y Q, YUAN Y B. Research progress of YOLO series algorithms for target detection from UAV perspective[J/OL]. China Industrial Economics, 2024: 1-33. [2024-05-29]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJHK20240822002&dbname=CJFD&dbcode=CJFQ(in Chinese).
    [8]
    李红光, 王玉峰, 杨丽春. 基于元学习的小样本遥感图像目标检测[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(8): 2503-2513.

    LI H G, WANG Y F, YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2503-2513(in Chinese).
    [9]
    吕奕龙, 苟瑶, 李敏, 等. 基于注意力引导和多样本决策的舰船检测方法[J]. 北京麻豆精品秘 国产传媒学报, 2025, 51(1): 202-213.

    LYU Y L, GOU Y, LI M, et al. Ship detection method based on attentional guidance and multi-sample decision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(1): 202-213(in Chinese).
    [10]
    JOCHER G. YOLOv5 by ultralytics (version 7.0) [EB/OL]. (2022-11-22)[2024-05-29]. http://doi.org/10.5281/zenodo.3908559.
    [11]
    HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1577-1586.
    [12]
    SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [13]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [14]
    HE D J, WANG Y Y, FANG F. The critical role of V2 population receptive fields in visual orientation crowding[J]. Current Biology, 2019, 29(13): 2229-2236.
    [15]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [16]
    HAN Y Q, LIAO J W, LU T S, et al. KCPNet: knowledge-driven context perception networks for ship detection in infrared imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5000219.
    [17]
    LUAN S Z, CHEN C, ZHANG B C, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366. doi: 10.1109/TIP.2018.2835143
    [18]
    LIU Y Q, JIA Q, FAN X, et al. Cross-SRN: structure-preserving super-resolution network with cross convolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 4927-4939. doi: 10.1109/TCSVT.2021.3138431
    [19]
    BANY M M, YEASIN M. Eigen-CAM: visual explanations for deep convolutional neural networks[J]. SN Computer Science, 2021, 2(1): 47. doi: 10.1007/s42979-021-00449-3
    [20]
    LECUN Y, CHOPRA S, HADSELL R, et al. A tutorial on energy-based learning[M]//BAKIR G, HOFMANN T, SCHLKOPF B, et al. Predicting structured data. Cambridage: MIT Press, 2006: 45-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(278) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return