Volume 51 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
XIE F W,WANG X G,GU Z Z. Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3515-3523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0521
Citation: XIE F W,WANG X G,GU Z Z. Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3515-3523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0521

Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks

doi: 10.13700/j.bh.1001-5965.2023.0521
Funds:

The Fundamental Research Funds for the Central Universities (30919011401)

More Information
  • Corresponding author: E-mail:wxgnets@163.com
  • Received Date: 08 Aug 2023
  • Accepted Date: 14 Sep 2023
  • Available Online: 28 Oct 2023
  • Publish Date: 24 Oct 2023
  • The trajectory planning method based on optimal control can maximize the flight capability of ultra-long-range glide-guided projectiles. However, when faced with uncertain battlefield conditions, this numerical method, which is time-consuming and prone to poor convergence, makes online applications difficult. To address this issue, a deep neural network-based trajectory planning method was proposed. This method utilized the non-linear mapping ability of deep neural networks to approximate the pseudospectral method computation model, reducing the computational load on the onboard computer of the projectile. The implementation of the method was primarily divided into two steps. The first step connected pre-contact points in three-dimensional space based on continuity conditions, considering various random states of the projectile and environment, using the multi-stage Gaussian pseudospectral method (MGPM), forming a range-optimal trajectory sample database that satisfies path constraints. The second step involved mapping out the optimal trajectory planning model by having the deep neural network learn the optimal actions of the projectile under different states offline, based on the optimal trajectory data sample library. Simulation results show that the proposed method can quickly generate near-optimal trajectories under random, demonstrating good real-time performance and robustness, making it suitable for solving online trajectory planning problems.

     

  • loading
  • [1]
    沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35(3): 593-606.

    SHEN L C, CHEN J, WANG N. Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 593-606 (in Chinese).
    [2]
    BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207. doi: 10.2514/2.4231
    [3]
    SHIRAZI A, CEBERIO J, LOZANO J A. Spacecraft trajectory optimization: a review of models, objectives, approaches and solutions[J]. Progress in Aerospace Sciences, 2018, 102: 76-98. doi: 10.1016/j.paerosci.2018.07.007
    [4]
    张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1): 023377.

    ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023377 (in Chinese).
    [5]
    黄长强, 国海峰, 丁达理. 高超声速滑翔飞行器轨迹优化与制导综述[J]. 宇航学报, 2014, 35(4): 369-379.

    HUANG C Q, GUO H F, DING D L. A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J]. Journal of Astronautics, 2014, 35(4): 369-379 (in Chinese).
    [6]
    ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1544-1553. doi: 10.1016/j.cja.2013.10.009
    [7]
    刘超越, 张成. 基于高斯伪谱法的二级助推战术火箭多阶段轨迹优化[J]. 兵工学报, 2019, 40(2): 292-302.

    LIU C Y, ZHANG C. Multi-stage trajectory optimization of tactical two-stage booster rocket based on Gauss pseudospectral method[J]. Acta Armamentarii, 2019, 40(2): 292-302 (in Chinese).
    [8]
    SU Y, DAI Y, LIU Y. A hybrid hyper-heuristic whale optimization algorithm for reusable launch vehicle reentry trajectory optimization[J]. Aerospace Science and Technology, 2021, 119: 107200. doi: 10.1016/j.ast.2021.107200
    [9]
    CHAI R Q, SAVVARIS A, TSOURDOS A, et al. Optimal tracking guidance for aeroassisted spacecraft reconnaissance mission based on receding horizon control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1575-1588. doi: 10.1109/TAES.2018.2798219
    [10]
    CONWAY B A. A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152(2): 271-306. doi: 10.1007/s10957-011-9918-z
    [11]
    杨希祥, 李晓斌, 肖飞, 等. 智能优化算法及其在飞行器优化设计领域的应用综述[J]. 宇航学报, 2009, 30(6): 2051-2061. doi: 10.3873/j.issn.1000-1328.2009.06.001

    YANG X X, LI X B, XIAO F, et al. Overview of intelligent optimization algorithm and its application in flight vehicles optimization design[J]. Journal of Astronautics, 2009, 30(6): 2051-2061 (in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.001
    [12]
    黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4): 524201.

    HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524201 (in Chinese).
    [13]
    魏毅寅, 郝明瑞, 范宇. 人工智能技术在宽域飞行器控制中的应用[J]. 宇航学报, 2023, 44(4): 530-537. doi: 10.3873/j.issn.1000-1328.2023.04.007

    WEI Y Y, HAO M R, FAN Y. The application of artificial intelligence technology in wide-field vehicle control[J]. Journal of Astronautics, 2023, 44(4): 530-537 (in Chinese). doi: 10.3873/j.issn.1000-1328.2023.04.007
    [14]
    EFFATI S, PAKDAMAN M. Optimal control problem via neural networks[J]. Neural Computing and Applications, 2013, 23(7): 2093-2100.
    [15]
    SHI J L, WANG J B, SU L F, et al. A neural network warm-started indirect trajectory optimization method[J]. Aerospace, 2022, 9(8): 435. doi: 10.3390/aerospace9080435
    [16]
    LI X, WANG L, WANG H, et al. A warm-started trajectory planner for fixed-wing unmanned aerial vehicle formation[J]. Applied Mathematical Modelling, 2023, 122: 200-219. doi: 10.1016/j.apm.2023.05.035
    [17]
    SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. doi: 10.2514/1.G002357
    [18]
    CHENG L, WANG Z B, JIANG F H, et al. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2642-2655.
    [19]
    WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404. doi: 10.1007/s00521-022-08024-4
    [20]
    CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6904-6915.
    [21]
    DAI P, FENG D Z, FENG W H, et al. Entry trajectory optimization for hypersonic vehicles based on convex programming and neural network[J]. Aerospace Science and Technology, 2023, 137: 108259. doi: 10.1016/j.ast.2023.108259
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views(166) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return