Volume 51 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
PENG Y X,HE Z,QIU J W. Active deformation decision-making for four-wing variable sweep aircraft based on LSTM-DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3504-3514 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0513
Citation: PENG Y X,HE Z,QIU J W. Active deformation decision-making for four-wing variable sweep aircraft based on LSTM-DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3504-3514 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0513

Active deformation decision-making for four-wing variable sweep aircraft based on LSTM-DDPG algorithm

doi: 10.13700/j.bh.1001-5965.2023.0513
Funds:

National Natural Science Foundation of China (61873126)

More Information
  • Corresponding author: E-mail:hezhen@nuaa.edu.cn
  • Received Date: 08 Aug 2023
  • Accepted Date: 23 Oct 2023
  • Available Online: 24 Nov 2023
  • Publish Date: 21 Nov 2023
  • This paper presented an intelligent deformation control method based on the long short-term memory (LSTM) deep deterministic policy gradient (DDPG) algorithm, addressing the active deformation control challenges in variable configuration aircraft. A four-wing variable sweep aircraft with a tandem-wing configuration was studied, and its geometric model and aerodynamic parameters were calculated through OPENVSP, which was then used to establish the aircraft’s dynamics model. The LSTM-DDPG algorithm learning framework was designed for the accelerated climb process of the four-wing variable sweep aircraft. Under symmetrical deformation conditions, active deformation decision training was performed for longitudinal trajectory tracking. Simulation results show that the LSTM-DDPG algorithm applied to the active deformation control process converges quickly and achieves higher average rewards. Moreover, the trained active deformation controller exhibits good control performance in the trajectory tracking tasks of the four-wing variable sweep aircraft.

     

  • loading
  • [1]
    BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [2]
    GUO T H, HOU Z X, ZHU B J. Dynamic modeling and active morphing trajectory-attitude separation control approach for gull-wing aircraft[J]. IEEE Access, 2017, 5: 17006-17019. doi: 10.1109/ACCESS.2017.2743059
    [3]
    WU Z H, LU J C, SHI J P, et al. Robust adaptive neural control of morphing aircraft with prescribed performance[J].Mathematical Problems in Engineering, 2017, 2017(1): 1401427. doi: 10.1155/2017/1401427
    [4]
    GONG L G, WANG Q, HU C H, et al. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 672-687. doi: 10.1016/j.cja.2019.10.005
    [5]
    XU D, HUI Z, LIU Y, et al. Morphing control of a new bionic morphing UAV with deep reinforcement learning[J]. Aerospace science and technology, 2019, 92: 232-243. doi: 10.1016/j.ast.2019.05.058
    [6]
    YANG Z C, TAN J B, WANG X Q, et al. Reinforcement learning-based robust tracking control application to morphing aircraft[C]//Proceeding of the American Control Conference. Piscataway: IEEE Press, 2023: 2757-2762.
    [7]
    SONG Z G, LIN Y C, LV R L, et al. Research on UAV autonomous deformation strategy based on deep learning[C]//Proceeding of the 5th International Symposium on Autonomous Systems (ISAS). Piscataway: IEEE Press, 2022: 1-7.
    [8]
    Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J/OL]. arXiv preprint, [2013-12-19]. http://doi.org/10.48550/arXiv.1312.5602
    [9]
    VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100.
    [10]
    WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the International Conference on Machine Learning. New York: ICML, 2016: 1995-2003.
    [11]
    SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//Proceedings of the International Conference on Machine Learning. New York: ICML, 2015: 1889-1897.
    [12]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2023-10-23]. http://arxiv.org/abs/1707.06347.
    [13]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]//Proceedings of 4th International Conference on Learning Representations.Washington, D.c.: ICIR, 2016.
    [14]
    KONDA V, TSITSIKLIS J. Actor-critic algorithms[J]. Advances in Neural Information Processing Systems, 1999, 12: 1008-1014.
    [15]
    马少捷, 惠俊鹏, 王宇航, 等. 变形飞行器深度强化学习姿态控制方法研究[J]. 航天控制, 2022, 40(6): 3-10. doi: 10.3969/j.issn.1006-3242.2022.06.001

    MA S J, HUI J P, WANG Y H, et al. Research on attitude control method of morphing aircraft based on deep reinforcement learning[J]. Aerospace Control, 2022, 40(6): 3-10 (in Chinese). doi: 10.3969/j.issn.1006-3242.2022.06.001
    [16]
    LI B, YANG Z P, CHEN D Q, et al. Maneuvering target tracking of UAV based on MN-DDPG and transfer learning[J]. Defence Technology, 2021, 17(2): 457-466. doi: 10.1016/j.dt.2020.11.014
    [17]
    LI R Z, WANG Q, LIU Y-A, et al. Morphing strategy design for UAV based on prioritized sweeping reinforcement learning[C]//Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 2786-2791.
    [18]
    仇靖雯, 何真, 黄赞. 四翼变掠角飞行器模糊建模及受约束飞行控制[J]. 飞行力学, 2023, 41(4): 10-18.

    QIU J W, HE Z, HUANG Z. Fuzzy modeling and constrained flight control of four-wing variable sweep aircraft[J]. Flight Dynamics, 2023, 41(4): 10-18, 28 (in Chinese).
    [19]
    高良. 弹射式变掠角串置翼飞行机器人设计及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    GAO L. Research on design and control of catapult launched tandem-wing flying robot with variable sweep[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [20]
    杨惟轶, 白辰甲, 蔡超, 等. 深度强化学习中稀疏奖励问题研究综述[J]. 计算机科学, 2020, 47(3): 182-191. doi: 10.11896/jsjkx.190200352

    YANG W Y, BAI C J, CAI C, et al. Survey on sparse reward in deep reinforcement learning[J]. Computer Science, 2020, 47(3): 182-191(in Chinese). doi: 10.11896/jsjkx.190200352
    [21]
    KIM J J, CHA S H, RYU M, et al. Pre-training framework for improving learning speed of reinforcement learning based autonomous vehicles[C]//Proceedings of the International Conference on Electronics, Information, and Communication. Piscataway: IEEE Press, 2019: 1-2.
    [22]
    YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. doi: 10.1162/neco_a_01199
    [23]
    CHAO W, HAN D W, JIE X W. Multi-rotor UAV autonomous tracking and obstacle avoidance based on improved DDPG[C]// Proceedings of the 2nd International Conference on Artificial Intelligence and Computer Engineering. Piscataway: IEEE Press, 2021: 261-267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(285) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return