Volume 51 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
LI W Q,WANG B,YANG J J,et al. Contamination lock characteristics analysis of fuel metering unit based on OMEGA theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3433-3442 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0510
Citation: LI W Q,WANG B,YANG J J,et al. Contamination lock characteristics analysis of fuel metering unit based on OMEGA theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3433-3442 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0510

Contamination lock characteristics analysis of fuel metering unit based on OMEGA theory

doi: 10.13700/j.bh.1001-5965.2023.0510
Funds:

National Science and Technology Major Project (J2019-Ⅴ-0016-0111)

More Information
  • Corresponding author: E-mail:binwang@nuaa.edu.cn
  • Received Date: 04 Aug 2023
  • Accepted Date: 25 Aug 2023
  • Available Online: 28 Oct 2023
  • Publish Date: 23 Oct 2023
  • To quantify the impact of contamination particles on the operational characteristics of a fuel metering unit (FMU) and to explore an analytical method for the contamination lock characteristics of non-standard fuel components, OMEGA theory was applied to translate the effect of these particles into lock forces on fuel components. A dynamic model for the components and units under fuel contamination conditions was developed. The operational characteristics of an FMU using class GJB 420B-7/8/9 fuel were simulated, and the effects of each fuel class on key components were analyzed. The results show that the load flow response from the servo-valve contamination lock model aligns closely with the standard servo-valve lock model. The maximum lock force of the metering valve reaches 140 N for class GJB 420B-9 fuel. The response time is more than twice as long as that under non-contaminated conditions, and the maximum relative error in the metered fuel increases by a factor of more than four. The method proposed in this paper provides a valuable reference for modeling contamination lock effects in non-standard fuel components and systems.

     

  • loading
  • [1]
    杨文举, 邵垒, 刘卫华, 等. 飞机燃油箱水污染物数值建模[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(11): 3578-3586.

    YANG W J, SHAO L, LIU W H, et al. Numerical modeling of water contaminants in aircraft fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11): 3578-3586(in Chinese).
    [2]
    赵维义, 李岩, 王占勇, 等. 飞机液压系统油液的污染与控制[J]. 机床与液压, 2012, 40(10): 157-159. doi: 10.3969/j.issn.1001-3881.2012.10.050

    ZHAO W Y, LI Y, WANG Z Y, et al. Pollution and control of oil in hydraulic system of aircraft[J]. Machine Tool & Hydraulics, 2012, 40(10): 157-159(in Chinese). doi: 10.3969/j.issn.1001-3881.2012.10.050
    [3]
    李志强. 高效精油过滤器的设计及在线检测和监控[D]. 南京: 南京理工大学, 2016: 6-9.

    LI Z Q. Design and on-line detection and monitoring of high-efficiency essential oil filter[D]. Nanjing: Nanjing University of Science and Technology, 2016: 6-9(in Chinese).
    [4]
    郭善新, 陈达贵, 张禹, 等. 高压齿轮泵污染磨损的寿命模型研究与验证[J]. 流体机械, 2018, 46(5): 13-17. doi: 10.3969/j.issn.1005-0329.2018.05.003

    GUO S X, CHEN D G, ZHANG Y, et al. Research and verification of life model for pollution wear of high pressure gear pump[J]. Fluid Machinery, 2018, 46(5): 13-17(in Chinese). doi: 10.3969/j.issn.1005-0329.2018.05.003
    [5]
    罗宇轩, 林振浩, 母娟, 等. 阀芯卡滞的研究进展[J]. 机电工程, 2022, 39(7): 865-876. doi: 10.3969/j.issn.1001-4551.2022.07.001

    LUO Y X, LIN Z H, MU J, et al. Research progress of valve core clamping[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(7): 865-876(in Chinese). doi: 10.3969/j.issn.1001-4551.2022.07.001
    [6]
    郑帅可. 液压元件污染敏感度分析及测试系统研制[D]. 杭州: 浙江大学, 2020.

    ZHENG S K. Analysis of contamination sensitivity of hydraulic components and development of testing system[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
    [7]
    卢继霞, 郭瑞宇, 王成, 等. 基于固体颗粒尺寸分布的微孔滤膜堵塞机理分析[J]. 机械工程学报, 2018, 54(20): 145-151. doi: 10.3901/JME.2018.20.145

    LU J X, GUO R Y, WANG C, et al. Fouling mechanism analysis on micro-pore filter membrane based on the solid particle size distribution[J]. Journal of Mechanical Engineering, 2018, 54(20): 145-151(in Chinese). doi: 10.3901/JME.2018.20.145
    [8]
    刘阁, 张梅菊, 王文瑾, 等. 光阻法油液污染度检测传感器的设计与实现[J]. 测控技术, 2022, 41(3): 18-25.

    LIU G, ZHANG M J, WANG W J, et al. Design and implementation of oil contamination detection sensor based on photoresist method[J]. Measurement & Control Technology, 2022, 41(3): 18-25(in Chinese).
    [9]
    SRIDHAR V, CHANA K S, SINGH D. Computational and experimental study of a platinum thin-film based oil condition and contamination sensor[C]//Proceedings of the ASME Turbo Expo 2017 Turbomachinery Technical Conference and Exposition. New York: ASME, 2017: 1-7.
    [10]
    姚金勇, 李娇, 张坤, 等. 液压系统污染性能仿真与优化设计[J]. 液压与气动, 2014, 38(3): 48-53.

    YAO J Y, LI J, ZHANG K, et al. Pollution performance simulation and optimization design for hydraulic system[J]. Chinese Hydraulics & Pneumatics, 2014, 38(3): 48-53(in Chinese).
    [11]
    张人才. 主动控制油液污染来提高航空液压系统的可靠性及寿命[D]. 北京: 中国地质大学(北京), 2017: 47-53.

    ZHANG R C. Actively control oil pollution to improve the reliability and life of aviation hydraulic system[D]. Beijing: China University of Geosciences (Beijing), 2017: 47-53(in Chinese).
    [12]
    JI H, NIE S L, BAI X R. Simulation on mechanism of contamination mitigation through Higee and hydrocyclone techniques in fluid power system[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(1): 77-93. doi: 10.1177/0954408916684161
    [13]
    张育洋. 基于污染磨损试验的液压柱塞泵寿命评估技术研究[D]. 西安: 西安电子科技大学, 2019.

    ZHANG Y Y. Research on life assessment technology of hydraulic piston pump based on pollution wear test[D]. Xi’an: Xidian University, 2019(in Chinese).
    [14]
    刘勇, 马彪, 张赛飞, 等. 油液污染颗粒引起的齿轮泵劣化失效研究[J]. 农业机械学报, 2015, 46(2): 316-321. doi: 10.6041/j.issn.1000-1298.2015.02.047

    LIU Y, MA B, ZHANG S F, et al. Failure analysis of degradation induced by contaminant particles in gear pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 316-321(in Chinese). doi: 10.6041/j.issn.1000-1298.2015.02.047
    [15]
    王洪波, 黄智鹏, 张向英, 等. 基于加速寿命试验方法的伺服阀污染卡滞寿命分析[J]. 液压与气动, 2022, 46(7): 131-135. doi: 10.11832/j.issn.1000-4858.2022.07.017

    WANG H B, HUANG Z P, ZHANG X Y, et al. Analysis of fouling and sticking life of servo valve based on accelerated life test method[J]. Chinese Hydraulics & Pneumatics, 2022, 46(7): 131-135(in Chinese). doi: 10.11832/j.issn.1000-4858.2022.07.017
    [16]
    郑长松, 葛鹏飞, 李芸辉, 等. 液压滑阀污染卡紧及滤饼形成机制研究[J]. 润滑与密封, 2014, 39(8): 14-19. doi: 10.3969/j.issn.0254-0150.2014.08.003

    ZHENG C S, GE P F, LI Y H, et al. Contaminant lock force and filter cake forming mechanism of hydraulic spool valves[J]. Lubrication Engineering, 2014, 39(8): 14-19(in Chinese). doi: 10.3969/j.issn.0254-0150.2014.08.003
    [17]
    中国航空工业第二集团. 航空工作液固体污染度分级: GJB 420B—2015[S]. 北京: 总装备部军标出版发行部, 2016: 1-3.

    The Second Group of China Aviation Industry. Solid particle contamination classes for fluid of aviation: GJB 420B—2015[S]. Beijing: Military Standard Publishing and Distribution Department of General Equipment Department, 2016: 1-3(in Chinese).
    [18]
    ZHANG Y, WANG S P, SHI J, et al. Evaluation of thermal effects on temperature-sensitive operating force of flow servo valve for fuel metering unit[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1812-1823. doi: 10.1016/j.cja.2019.09.011
    [19]
    来晨阳, 郭迎清, 于华锋. 基于RF-SVR的燃油计量装置性能衰退检测和剩余寿命估计方法[J]. 航空动力学报, 2019, 34(7): 1624-1632.

    LAI C Y, GUO Y Q, YU H F. Fuel metering unit performance degradation detection and remaining useful life estimation method based on RF-SVR[J]. Journal of Aerospace Power, 2019, 34(7): 1624-1632(in Chinese).
    [20]
    陆亮, 夏飞燕, 訚耀保, 等. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.

    LU L, XIA F Y, YIN Y B, et al. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1265-1273(in Chinese).
    [21]
    朴英, 张绍基. 某涡扇发动机加力供油系统排故试验及仿真研究[J]. 航空动力学报, 1995, 10(4): 354-356.

    PIAO Y, ZHANG S J. Troubleshooting tests and simulation for a reheat fuel system of a turbofan engine[J]. Journal of Aerospace Power, 1995, 10(4): 354-356(in Chinese).
    [22]
    WANG X H, YAN Y J, LI Q X. Contaminant lock life prediction of double flapper-nozzle servo valve[J]. Advanced Materials Research, 2014, 933: 953-958. doi: 10.4028/www.scientific.net/AMR.933.953
    [23]
    中国人民解放军驻113厂军事代表室, 中国一航第113厂. 航空发动机燃油系统附件污染度要求: GJB 7078—2010[S]. 北京: 总装备部军标出版发行部, 2010: 1-2.

    Military Representative Office of the Chinese People’s Liberation Army Stationed at Factory 113, No.113 Factory of Aviation Industry Corporation of China. Fuel systems, components, aero-engine, requirements for contamination: GJB 7078—2010[S]. Beijing: Military Standard Publishing and Distribution Department of General Equipment Department, 2010: 1-2(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(141) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return