留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间飞艇电源系统技术难点及发展趋势

徐国宁 张衍垒 陈康 黄庭双 孔华 焦斌

徐国宁,张衍垒,陈康,等. 临近空间飞艇电源系统技术难点及发展趋势[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2573-2586 doi: 10.13700/j.bh.1001-5965.2024.0866
引用本文: 徐国宁,张衍垒,陈康,等. 临近空间飞艇电源系统技术难点及发展趋势[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2573-2586 doi: 10.13700/j.bh.1001-5965.2024.0866
XU G N,ZHANG Y L,CHEN K,et al. Technical difficulties and development trend of near-space airship’s power system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2573-2586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0866
Citation: XU G N,ZHANG Y L,CHEN K,et al. Technical difficulties and development trend of near-space airship’s power system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2573-2586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0866

临近空间飞艇电源系统技术难点及发展趋势

doi: 10.13700/j.bh.1001-5965.2024.0866
基金项目: 

中国科学院稳定支持基础研究领域青年团队计划(YSBR-102)

详细信息
    通讯作者:

    E-mail:chenkang@aircas.ac.cn

  • 中图分类号: V274;V11

Technical difficulties and development trend of near-space airship’s power system

Funds: 

CAS Project for Young Scientists in Basic Research (YSBR-102)

More Information
  • 摘要:

    临近空间飞艇因其飞行时间长、载荷能力大、运维成本低等优势,在通信和应急救援等方面有着巨大的应用潜力,其电源系统由太阳电池、储能电池、电源管理与配电等组成。为应对临近空间低压、低温、强紫外辐射等极端环境并实现长时间稳定运行,需要对电源系统进行适应性设计与优化。 通过对临近空间环境特点、临近空间飞艇电源系统组成特点及发展现状的回顾和分析,总结过去、当前和未来的临近空间飞艇电源系统技术发展相关的关键问题,探讨临近空间飞艇电源系统面临的技术问题和挑战,明确各项技术所需重点突破的方向和指标,指出低成本高效率的太阳电池组件、高质量比能量长循环寿命的储能电池模组及高可靠性高效的分布式电源管理技术等是急需突破的关键技术。同时,远距离无线能量传输及极端环境利用技术是潜在的提高电源系统能力的方式。为临近空间飞艇电源系统设计者和相关学科研究人员提供参考并开展需求导向的研究工作。

     

  • 图 1  0~100 km大气圈层分布及温度、气压、气体密度、臭氧浓度变化

    Figure 1.  Distribution of atmospheric layers and changes in temperature, air pressure, gas density, and ozone density between 0 and 100 km

    图 2  大气中高能粒子的垂直分布[3]

    Figure 2.  Vertical profile of high-energy particles in the atmosphere[3]

    图 3  Sceye平流层飞艇

    Figure 3.  Sceye’s stratospheric airship

    图 4  临近空间飞艇电源系统结构[20]

    注:MPPT (maximum power point tracking)

    Figure 4.  Structure of near-space airship’s power system[20]

    图 5  电源系统在飞艇周围的布局[21]

    Figure 5.  Distribution of energy systems around airship[21]

    图 6  晶体硅和非晶硅的太阳电池板[24]

    Figure 6.  Solar panels in crystalline silicon and amorphous silicon[24]

    图 7  晶体硅异质结太阳电池组件[30]

    Figure 7.  Crystalline silicon heterojunction solar cell module[30]

    图 8  再生燃料电池系统流程[17]

    Figure 8.  Renewable fuel cells system process diagram[17]

    表  1  临近空间飞艇电源系统与卫星电源系统对比

    Table  1.   Comparison of power systems for near-space airships with power systems for satellites

    电源系统 功率等级/kW 电压等级/V 能源情况 电源系统结构规模 外部环境
    临近空间飞艇电源 10~200 ≥300 紧张 庞大且分散 复杂多变
    卫星电源 1~10 ≤100 足够 集中 单一
    下载: 导出CSV

    表  2  临近空间飞艇用太阳电池类型及光电转化效率

    Table  2.   Types and photovoltaic conversion efficiencies of solar cells for near-space airships

    飞艇名称 年份 太阳电池类型 光电转化
    效率/%
    HASPA 1975 硅 N/P
    太阳能电池
    9.5~10
    HALROP 1991 单晶硅 14~16
    Lotte 1991—1995 非晶硅 10~12
    SPF 飞艇 1998 非晶硅 12
    SOUNDER 2000 自动太阳
    跟踪模式
    (未提及效率)
    未提及
    HiSentinel 2005—2010 非晶硅 16.8
    HALE-D 2009 非晶硅 未提及
    Low-to Medium-
    altitude Airship
    2010 硅基电池 19
    MAAT 2011 非晶硅 8.5
    下载: 导出CSV
  • [1] 刘畅, 许相玺. 临近空间飞行器: 改变未来战场规则的新型武器[J]. 军事文摘, 2020(17): 46-49.

    LIU C, XU X X. Near spacecraft: a new weapon to change the rules of the future battlefield[J]. Military Digest, 2020(17): 46-49(in Chinese).
    [2] COLOZZA A, DOLCE J. Initial feasibility assessment of a high altitude long endurance airship: E-14248[EB/OL]. (2003-12-01)[2024-12-01]. http://ntrs.nasa.gov/citations/20040021326.
    [3] MIRONOVA I A, APLIN K L, ARNOLD F, et al. Energetic particle influence on the Earth’s atmosphere[J]. Space Science Reviews, 2015, 194(1): 1-96.
    [4] 周荔丹, 闫朝鑫, 姚钢, 等. 空间辐射环境对航天器分布式电力系统关键部件的影响及应对策略[J]. 电工技术学报, 2022, 37(6): 1365-1380.

    ZHOU L D, YAN C X, YAO G, et al. Influence of space radiation environment on critical components of spacecraft distributed power system and countermeasures[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1365-1380(in Chinese).
    [5] 张战刚, 雷志锋, 师谦, 等. 临近空间中子辐射环境分析及其引起的单粒子效应预计研究[J]. 空间科学学报, 2018, 38(4): 502-507. doi: 10.11728/cjss2018.04.502

    ZHANG Z G, LEI Z F, SHI Q, et al. Neutron radiation environment and resulting single event effects prediction in near space[J]. Chinese Journal of Space Science, 2018, 38(4): 502-507(in Chinese). doi: 10.11728/cjss2018.04.502
    [6] ADELL P C, SCHEICK L Z. Radiation effects in power systems: a review[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1929-1952. doi: 10.1109/TNS.2013.2262235
    [7] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA15-1-SIA15-16.
    [8] PETRONE F, WESSEL P. HASPA design and flight test objectives: AIAA 1975-924[R]. Reston: AIAA, 1975.
    [9] LEE M, SMITH I, ANDROULAKAKIS S. High-altitude LTA airship efforts at the U. S. army SMDC/ARSTRAT: AIAA 2009-2852 [R]. Reston: AIAA, 2009.
    [10] SMITH I, LEE M. The HiSentinel airship: AIAA 2007-7748[R]. Reston: AIAA, 2007.
    [11] SMITH T, BINGHAM C, STEWART P, et al. MAAT high altitude cruiser feeder airship concept[C]//Proceedings of the Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway: IEEE Press, 2012: 1-6.
    [12] LIAO J, JIANG Y, LI J, et al. An improved energy management strategy of hybrid photovoltaic/battery/fuel cell system for stratospheric airship[J]. Acta Astronautica, 2018, 152: 727-739. doi: 10.1016/j.actaastro.2018.09.007
    [13] MENG J H, MA N, MENG F M, et al. Energy management strategy of hybrid energy system for a multi-lobes hybrid air vehicle[J]. Energy, 2022, 255: 124539. doi: 10.1016/j.energy.2022.124539
    [14] SUN K W, LI J, LIANG H Q, et al. Simulation of a hybrid energy system for stratospheric airships[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4426-4436. doi: 10.1109/TAES.2020.2991806
    [15] Airforce-Technology. Stratobus autonomous stratospheric airship[EB/OL]. (2020-01-23)[2024-12-01]. http://www.airforce-technology.com/projects/stratobus/?utm_source=&utm_medium=6-201712&utm_campaign=.
    [16] LOBNER P. Thales Alenia Space-Stratobus[EB/OL]. (2022-03-10)[2024-12-01]. http://lynceans.org/wp-content/uploads/2021/04/Thales-Alenia-Space_Stratobus-converted.pdf.
    [17] Sceye. High-altitude platform systems (HAPS)-Sceye[EB/OL]. (2022-09-07)[2024-12-01]. http://www.sceye.com/.
    [18] ROSWELL N M. Sceye HAPS ascend to stratosphere using renewable energy sources[EB/OL]. (2022-06-15)[2024-12-01]. http://www.businesswire.com/news/home/20220614006039/en/Sceye-HAPS-Ascend-to-Stratosphere-Using-Renewable-Energy-Sources.
    [19] Sceye股份公司. 具有弱溶剂化电解质的锂硫电池: CN202080009402.1[P]. 2021-08-31.

    Sceye AG. Lithium-sulfur battery with weakly solvated electrolyte: CN202080009402.1[P]. 2021-08-31(in Chinese) .
    [20] LOBNER P. DARPA/Lockheed Martin-ISIS stratospheric airship[Z/OL]. (2023-06-16)[2024-12-01]. http://lynceans.org/wp-content/uploads/2020/12/DARPA-LM_ISIS.pdf.
    [21] LOBNER P. Lockheed-Martin_HALE-D-1[Z/OL]. (2023-06-16)[2024-12-01]. http://lynceans.org/wp-content/uploads/2020/12/Lockheed-Martin_HALE-D-1.pdf.
    [22] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636. doi: 10.1016/j.rser.2010.11.032
    [23] ALLOUHI A, REHMAN S, BUKER M S, et al. Up-to-date literature review on solar PV systems: technology progress, market status and R&D[J]. Journal of Cleaner Production, 2022, 362: 132339. doi: 10.1016/j.jclepro.2022.132339
    [24] XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships: a review[J]. Acta Astronautica, 2020, 167: 245-259. doi: 10.1016/j.actaastro.2019.11.021
    [25] HOSHINO T, OKAYA S, FUJIWARA T, et al. Design and analysis of solar power system for SPF airship operations: AIAA 1999-3913[R]. Reston: AIAA, 1999.
    [26] ONDA M, MORIKAWA Y. High-altitude lighter-than-air powered platform: 912054[R]. Warrendale: SAE International, 1991.
    [27] LI W, CAI Y, WANG L L, et al. Fabrication and characteristics of N-I-P structure amorphous silicon solar cells with CdS quantum dots on nanopillar array[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109: 152-155. doi: 10.1016/j.physe.2019.01.017
    [28] LONG J H, WU D Y, HUANG X P, et al. Failure analysis of thin-film four-junction inverted metamorphic solar cells[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(2): 181-187. doi: 10.1002/pip.3355
    [29] LIU W Z, LIU Y, YANG Z, et al. Flexible solar cells based on foldable silicon wafers with blunted edges[J]. Nature, 2023, 617(7962): 717-723.
    [30] 朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3): 623503.

    ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623503(in Chinese).
    [31] SUN K W, ZOU T, GAO J, et al. Impact of cracks in solar array on output power of stratospheric airship[J]. Solar Energy, 2024, 267: 112234. doi: 10.1016/j.solener.2023.112234
    [32] GILI P, CIVERA M, ROY R, et al. Design of a prototype unmanned lighter-than-air platform for remote sensing: control, alimentation, and propulsion systems[C]//Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences. [S. l. ]: ICAS, 2020: 21.
    [33] Amprius. The all-new Amprius 500 Wh/kg battery platform is here[EB/OL]. (2023-03-23)[2024-12-01]. http://amprius.com/the-all-new-amprius-500-wh-kg-battery-platform-is-here/.
    [34] PUBLISHED B T. So close! Zephyr drone lands just hours before setting flight-duration record[EB/OL]. (2022-08-30)[2024-12-01]. http://www.space.com/airbus-zephyr-drone-long-lands-before-record.
    [35] QIAN J F, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: 6362. doi: 10.1038/ncomms7362
    [36] CARBONE L, GREENBAUM S G, HASSOUN J. Lithium sulfur and lithium oxygen batteries: new frontiers of sustainable energy storage[J]. Sustainable Energy & Fuels, 2017, 1(2): 228-247.
    [37] LI M Y, JAFTA C J, BELHAROUAK I. Progress of nanotechnology for lithium-sulfur batteries[M]//RACCICHINI R, ULISSI U. Nanomaterials for electrochemical energy storage-challenges and opportunities. Amsterdam: Elsevier, 2021: 137-164.
    [38] SHI Z X, THOMAS S, TIAN Z N, et al. A tailored highly solvating electrolyte toward ultra lean-electrolyte Li-S batteries[J]. Nano Research Energy, 2024, 3(4): e9120126. doi: 10.26599/NRE.2024.9120126
    [39] ZHOU J B, CHANDRAPPA M L H, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li-S batteries[J]. Nature, 2024, 627(8003): 301-305. doi: 10.1038/s41586-024-07101-z
    [40] LI J, XIE F X, PANG W W, et al. Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte[J]. Science Advances, 2024, 10(11): eadl3925. doi: 10.1126/sciadv.adl3925
    [41] WANG Y T, JU J W, DONG S M, et al. Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton[J]. Advanced Functional Materials, 2021, 31(28): 2101523. doi: 10.1002/adfm.202101523
    [42] YAN Y Y, JU J W, DONG S M, et al. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Advanced Science, 2021, 8(9): 2003887. doi: 10.1002/advs.202003887
    [43] ZOU Y G, LIU G, WANG Y Q, et al. Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature[J]. Advanced Energy Materials, 2023, 13(19): 2300443. doi: 10.1002/aenm.202300443
    [44] JIE Y L, WANG S Y, WENG S T, et al. Towards long-life 500 Wh· kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes[J]. Nature Energy, 2024, 9: 987-998. doi: 10.1038/s41560-024-01565-z
    [45] PU Z H, ZHANG G X, HASSANPOUR A, et al. Regenerative fuel cells: recent progress, challenges, perspectives and their applications for space energy system[J]. Applied Energy, 2021, 283: 116376. doi: 10.1016/j.apenergy.2020.116376
    [46] SHARAF O Z, ORHAN M F. An overview of fuel cell technology: fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853. doi: 10.1016/j.rser.2014.01.012
    [47] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. doi: 10.1016/j.rser.2016.01.053
    [48] DOLCE J, COLOZZA A, WAGNER R. A regenerative electric power system for high altitude airships: AIAA 2003-6088[R]. Reston: AIAA, 2003.
    [49] ZHANG C, QIAO K, WU L. The comparative analysis of the stratospheric airship power supply system[J]. Advanced Materials Research, 2014, 1008-1009: 82-86. doi: 10.4028/www.scientific.net/AMR.1008-1009.82
    [50] BAŞOĞLU M E. Comprehensive review on distributed maximum power point tracking: submodule level and module level MPPT strategies[J]. Solar Energy, 2022, 241: 85-108. doi: 10.1016/j.solener.2022.05.039
    [51] 朱拓斐, 陈国定. 光伏发电中MPPT控制方法综述[J]. 电源技术, 2011, 35(10): 1322-1324. doi: 10.3969/j.issn.1002-087X.2011.10.043

    ZHU T F, CHEN G D. Survey of MPPT for photovoltaic power generation[J]. Chinese Journal of Power Sources, 2011, 35(10): 1322-1324(in Chinese). doi: 10.3969/j.issn.1002-087X.2011.10.043
    [52] MEI Q. A solar power system for high altitude airships[D]. Toledo: University of Toledo, 2011.
    [53] 代莎, 董秀成, 夏焰坤, 等. 光伏阵列多峰最大功率点优化跟踪算法[J]. 电力系统及其自动化学报, 2018, 30(12): 48-52. doi: 10.3969/j.issn.1003-8930.2018.12.007

    DAI S, DONG X C, XIA Y K, et al. Optimization algorithm of multi-peak maximum power point tracking for PV array[J]. Proceedings of the CSU-EPSA, 2018, 30(12): 48-52(in Chinese). doi: 10.3969/j.issn.1003-8930.2018.12.007
    [54] WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. doi: 10.1016/j.rser.2020.110015
    [55] 陈洪伟, 张新华, 和阳, 等. 航天器能源管理技术研究进展[J]. 空间控制技术与应用, 2019, 45(5): 63-71. doi: 10.3969/j.issn.1674-1579.2019.05.010

    CHEN H W, ZHANG X H, HE Y, et al. Research progress of spacecraft energy management technology[J]. Aerospace Control and Application, 2019, 45(5): 63-71(in Chinese). doi: 10.3969/j.issn.1674-1579.2019.05.010
    [56] 姜东升, 陈琦, 张沛, 等. 航天器供配电智能管理技术研究[J]. 航天器工程, 2012, 21(4): 100-105. doi: 10.3969/j.issn.1673-8748.2012.04.030

    JIANG D S, CHEN Q, ZHANG P, et al. Study on intelligent management technology for spacecraft electrical power[J]. Spacecraft Engineering, 2012, 21(4): 100-105(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.04.030
    [57] 王文楷, 彭疆, 侯文杰. 浅谈飞艇能源及其管理技术[C]//2011年中国浮空器大会. 北京: 中国航空学会, 2011: 234-240.

    WANG W K, PENG J, HOU W J. An overview of energy and its management technology for airships[C]//Proceedings of the 2011 China Floatplane Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2011: 234-240(in Chinese).
    [58] 张衍垒, 李兆杰, 王生, 等. 平流层飞艇太阳能电池布设区域的计算与仿真[J]. 计算机仿真, 2011, 28(8): 76-79. doi: 10.3969/j.issn.1006-9348.2011.08.018

    ZHANG Y L, LI Z J, WANG S, et al. Calculation and simulation of thin film solar cells region arrangement on stratosphere airship[J]. Computer Simulation, 2011, 28(8): 76-79(in Chinese). doi: 10.3969/j.issn.1006-9348.2011.08.018
    [59] LI J, LIAO J, LIAO Y X, et al. An approach for estimating perpetual endurance of the stratospheric solar-powered platform[J]. Aerospace Science and Technology, 2018, 79: 118-130. doi: 10.1016/j.ast.2018.05.035
    [60] 朱炳杰, 杨希祥, 麻震宇, 等. 平流层飞艇太阳电池系统产能分析[J]. 国防科技大学学报, 2019, 41(1): 13-18. doi: 10.11887/j.cn.201901003

    ZHU B J, YANG X X, MA Z Y, et al. Power analysis of stratospheric airship’s solar array system[J]. Journal of National University of Defense Technology, 2019, 41(1): 13-18(in Chinese). doi: 10.11887/j.cn.201901003
    [61] 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9): 224579.

    YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224579(in Chinese).
    [62] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019, 40(8): 878-886. doi: 10.3873/j.issn.1000-1328.2019.08.004

    ZHU B J, YANG Y D, YANG X X, et al. Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of Astronautics, 2019, 40(8): 878-886(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.08.004
    [63] 刘乾石, 徐国宁, 李兆杰, 等. 不规则太阳电池临近空间发电模型构建与分析[J]. 太阳能学报, 2022, 43(7): 73-79.

    LIU Q S, XU G N, LI Z J, et al. Research and analysis of irregular solar cells power generation model in near space[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 73-79(in Chinese).
    [64] GAO Y, XU G N, WANG S, et al. Solar array power prediction for near-space vehicles based on a hybrid method[J]. IEEE Access, 2022, 10: 123233-123250. doi: 10.1109/ACCESS.2022.3208173
    [65] 张衍垒, 李兆杰, 王旭巍, 等. 平流层飞艇表面太阳辐射量分布的分析研究[J]. 太阳能学报, 2020, 41(12): 110-116.

    ZHANG Y L, LI Z J, WANG X W, et al. Study on distribution of solar radiation distribution on stratospheric airship surface[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 110-116(in Chinese).
    [66] 刘松松, 孙康文. 考虑倍率的平流层飞艇储能电池建模与分析[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(1): 182-192.

    LIU S S, SUN K W. Modeling and analysis of stratospheric airship’s energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192(in Chinese).
    [67] YIN Z H, WANG L. Application and development prospect of digital twin technology in aerospace[J]. IFAC-PapersOnLine, 2020, 53(5): 732-737. doi: 10.1016/j.ifacol.2021.04.165
    [68] DHIMISH M, D’ALESSANDRO V, DALIENTO S. Investigating the impact of cracks on solar cells performance: analysis based on nonuniform and uniform crack distributions[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1684-1693.
    [69] MAJOR T A, YOUTSEY C, DREES M, et al. Demonstration of flexible 74.4 cm2 high efficiency AM0 inverted metamorphic three junction solar cells through epitaxial lift-off[C]//Proceedings of the 47th IEEE Photovoltaic Specialists Conference. Piscataway: IEEE Press, 2020: 1296-1297.
    [70] NREL. Best research-cell efficiency chart[EB/OL]. [2024-12-01]. http://www.nrel.gov/pv/cell-efficiency.
    [71] XU Z H, XU G N, LUO Q, et al. In situ performance and stability tests of large-area flexible polymer solar cells in the 35-km stratospheric environment[J]. National Science Review, 2023, 10(4): nwac285. doi: 10.1093/nsr/nwac285
    [72] 熊振阳, 蔡榕, 徐国宁, 等. 激光无线输能系统光伏特性及最大功率跟踪研究[J]. 太阳能学报, 2022, 43(9): 21-29.

    XIONG Z Y, CAI R, XU G N, et al. Research on photovoltaic characteristic and mppt of laser energy transmission system[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 21-29(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  101
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 录用日期:  2025-01-03
  • 网络出版日期:  2025-02-11
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答