留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于开关电容与耦合电感倍压单元的高增益直流变换器

熊振阳 尹靖元 霍群海 韩立博 韦统振

熊振阳,尹靖元,霍群海,等. 基于开关电容与耦合电感倍压单元的高增益直流变换器[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2652-2662 doi: 10.13700/j.bh.1001-5965.2024.0838
引用本文: 熊振阳,尹靖元,霍群海,等. 基于开关电容与耦合电感倍压单元的高增益直流变换器[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2652-2662 doi: 10.13700/j.bh.1001-5965.2024.0838
XIONG Z Y,YIN J Y,HUO Q H,et al. A high gain DC-DC converter based on switched capacitor and coupled inductor voltage multiplier unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2652-2662 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0838
Citation: XIONG Z Y,YIN J Y,HUO Q H,et al. A high gain DC-DC converter based on switched capacitor and coupled inductor voltage multiplier unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2652-2662 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0838

基于开关电容与耦合电感倍压单元的高增益直流变换器

doi: 10.13700/j.bh.1001-5965.2024.0838
基金项目: 

中国科学院青年团队项目(YSBR-102);中国科学院重点部署科研专项(KGFZD-145-23-54-4)

详细信息
    通讯作者:

    E-mail:yinjingyuan@mail.iee.ac.cn

  • 中图分类号: TM46

A high gain DC-DC converter based on switched capacitor and coupled inductor voltage multiplier unit

Funds: 

CAS Project for Young Scientists in Basic Research (YSBR-102); Chinese Academy of Sciences Key Scientific Research Projects (KGFZD-145-23-54-4)

More Information
  • 摘要:

    针对激光无线能量传输系统中光伏电池阵列输出电压低,需要高增益变换器进行升压变换的问题,提出一种基于开关电容与三绕组耦合电感倍压单元的新型高增益直流变换器。该变换器将电荷泵电容、箝位电容、倍压电容与三绕组耦合电感各绕组相配合,使电压均匀分配,提高变换器电压增益的同时使功率器件的电压应力显著下降。开关电容中的箝位电容实现了对功率开关管断开瞬间耦合电感漏感能量的缓冲吸收,避免尖峰电压产生的同时,实现了功率开关管的零电流导通,有助于变换器效率的提升。通过模拟仿真和实验对所提变换器工作原理和性能进行了分析验证。

     

  • 图 1  本文高增益直流变换器电路拓扑

    Figure 1.  Circuit topology of the proposed high gain DC-DC converter

    图 2  考虑漏感时变换器CCM下工作模态

    Figure 2.  Operating mode of converter in CCM under leakage inductance state

    图 3  本文变换器CCM工作模式下工作波形

    Figure 3.  Main operating waveforms of the proposed converter in CCM mode

    图 4  考虑漏感时本文变换器DCM模式下工作模态

    Figure 4.  Operating mode of the converter in DCM mode under leakage inductance state

    图 5  本文变换器DCM工作模式下工作波形

    Figure 5.  Main operating waveforms of the proposed converter in DCM mode

    图 6  本文变换器不同耦合系数k下电压增益

    Figure 6.  Voltage gain of the proposed converter with different coupling coefficient k

    图 7  本文变换器CCM模式下不同线圈匝比下电压增益

    Figure 7.  Voltage gain of the proposed converter with different coil turn ratio in CCM

    图 8  三绕组耦合电感电流波形

    Figure 8.  Three-winding coupled inductor current waveforms

    图 9  三绕组耦合电感电压波形

    Figure 9.  Voltage waveformsof three-winding coupled inductance

    图 10  二极管D1D2D3Do电流波形

    Figure 10.  Diodes D1, D2, D3, Do current waveforms

    图 11  二极管D1D2D3Do电压波形

    Figure 11.  Diode D1, D2, D3, Do voltage waveforms

    图 12  本文变换器实物样机

    Figure 12.  Prototype of the proposed converter

    图 13  本文变换器样机实验波形

    Figure 13.  Experimental waveforms of the proposed converter prototype

    图 14  耦合电感各绕组电流波形

    Figure 14.  Current waveform of each winding of coupling inductor

    图 15  开关管S零电流导通波形

    Figure 15.  Experimental waveforms of switch S on zero current conduction

    图 16  不同电压和功率等级下本文变换器效率

    Figure 16.  Efficiency of the converter at different voltage and power levels

    表  1  本文三绕组耦合电感变换器仿真参数

    Table  1.   Simulation parameters of the proposed three-winding coupled inductor converter

    参数
    输入电压Vin/V 20
    漏感Lk/μH 1
    励磁电感Lm/μH 18.75
    L2自感/μH 168.75
    L3自感/μH 300
    匝比N2N1 3
    匝比N3N1 4
    箝位电容C1/μF 150
    电荷泵电容C2/μF 22
    倍压电容C3/μF 47
    工作频率f/kHz 100
    负载电阻R 2200
    下载: 导出CSV

    表  2  本文三绕组耦合电感变换器实际样机器件参数

    Table  2.   Actual device parameters of the proposed three-winding coupling inductor converter prototype

    参数
    漏感Lk/μH 1
    励磁电感Lm/μH 18.75
    L2自感/μH 168.75
    L3自感/μH 168.75
    匝比N2N1 3
    匝比N3N1 3
    箝位电容C1/μF 60
    电荷泵电容C2/μF 47
    倍压电容C3/μF 47
    工作频率f/kHz 80
    下载: 导出CSV
  • [1] JIN K, ZHOU W Y. Wireless laser power transmission: a review of recent progress[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3842-3859. doi: 10.1109/TPEL.2018.2853156
    [2] 刘耀, 肖晋宇, 赵小令, 等. 无线电能传输技术发展与应用综述[J]. 电工电能新技术, 2023, 42(2): 48-67.

    LIU Y, XIAO J Y, ZHAO X L, et al. Development and application review on wireless power transmission technology[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(2): 48-67(in Chinese).
    [3] SHI D L, ZHANG L L, MA H H, et al. Research on wireless power transmission system between satellites[C]//Proceedings of the IEEE Wireless Power Transfer Conference. Piscataway: IEEE Press, 2016: 1-4.
    [4] RONG C C, DUAN X Y, CHEN M M, et al. Critical review of recent development of wireless power transfer technology for unmanned aerial vehicles[J]. IEEE Access, 2023, 11: 132982-133003.
    [5] ERICKSON R W. Fundamentals of power electronics[M]. Berlin: Springer, 1997.
    [6] HENN G A L, SILVA R N A L, PRAÇA P P, et al. Interleaved-boost converter with high voltage gain[J]. IEEE Transactions on Power Electronics, 2010, 25(11): 2753-2761. doi: 10.1109/TPEL.2010.2049379
    [7] MATSUO H, HARADA K. The cascade connection of switching regulators[J]. IEEE Transactions on Industry Applications, 1976, 12(2): 192-198.
    [8] WU T F, YU T H. Unified approach to developing single-stage power converters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 211-223. doi: 10.1109/7.640279
    [9] AXELROD B, BERKOVICH Y, IOINOVICI A. Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(2): 687-696. doi: 10.1109/TCSI.2008.916403
    [10] COCKROFT J D, WALTON E T. Production of high velocity positive ions[J]. Proceedings of the Royal Society of London, 1932, 136: 619-630.
    [11] AXELROD B, BERKOVICH Y, SHENKMAN A, et al. Diode–capacitor voltage multipliers combined with boost-converters: topologies and characteristics[J]. IET Power Electronics, 2012, 5(6): 873-884. doi: 10.1049/iet-pel.2011.0215
    [12] HWU K I, YAU Y T. High step-up converter based on charge pump and boost converter[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2484-2494. doi: 10.1109/TPEL.2011.2175010
    [13] MIDDLEBROOK R D. A continuous model for the tapped-inductor boost converter[C]//Proceedings of the IEEE Power Electronics Specialists Conference. Piscataway: IEEE Press, 1975: 63-79.
    [14] VAZQUEZ N, ESTRADA L, HERNANDEZ C, et al. The tapped-inductor boost converter[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Piscataway: IEEE Press, 2007: 538-543.
    [15] DWARI S M, PARSA L. A novel high efficiency high power interleaved coupled-inductor boost DC-DC converter for hybrid and fuel cell electric vehicle[C]//Proceedings of the IEEE Vehicle Power and Propulsion Conference. Piscataway: IEEE Press, 2007: 399-404.
    [16] ZHAO Q, TAO F F, LEE F C. A front-end DC/DC converter for network server applications[C]//Proceedings of the IEEE 32nd Annual Power Electronics Specialists Conference. Piscataway: IEEE Press, 2001: 1535-1539.
    [17] YU W S, HUTCHENS C, LAI J S, et al. High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications[C]//Proceedings of the IEEE Energy Conversion Congress and Exposition. Piscataway: IEEE Press, 2009: 3895-3900.
    [18] WAI R J, DUAN R Y. High step-up converter with coupled-inductor[J]. IEEE Transactions on Power Electronics, 2005, 20(5): 1025-1035. doi: 10.1109/TPEL.2005.854023
    [19] GU B, DOMINIC J, LAI J S, et al. High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 2048-2058. doi: 10.1109/TPEL.2012.2198834
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 录用日期:  2024-12-27
  • 网络出版日期:  2025-03-12
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答