留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市低空场景下无人机运行对地风险量化评估

陈艺君 余莎莎 张学军

陈艺君,余莎莎,张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):806-815 doi: 10.13700/j.bh.1001-5965.2024.0244
引用本文: 陈艺君,余莎莎,张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):806-815 doi: 10.13700/j.bh.1001-5965.2024.0244
CHEN Y J,YU S S,ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):806-815 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0244
Citation: CHEN Y J,YU S S,ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):806-815 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0244

城市低空场景下无人机运行对地风险量化评估

doi: 10.13700/j.bh.1001-5965.2024.0244
基金项目: 

国家空管监视与通信系统工程技术研究中心开放研究基金(w222394) 

详细信息
    通讯作者:

    E-mail:yushasha@mail.xhu.edu.cn

  • 中图分类号: V279;V355;X913.4

Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios

Funds: 

Open Research Fund of National Center of ATC Surveillance and Communication System Engineering Research (w222394) 

More Information
  • 摘要:

    为保证无人机(UAV)在城市低空安全运行,构建UAV运行的地面风险量化评估模型,提出使用考虑多因素多层次的对地风险地图,来定义与UAV相关的对地风险,量化风险程度。分析城市低空典型特征和UAV坠地事故因果链,建立多因素影响下的地面风险量化评估模型;考虑UAV的下降行为和风参数的不确定性,计算UAV坠地的影响区域概率密度函数;通过结合城市区域地图、人口密度、遮蔽效应、障碍物和禁飞区多个图层,计算每个地理参考单元的风险值,生成大区域范围的地面风险地图。基于真实算例对所建模型进行验证分析,结果表明:不同城市区域的风险分布区别明显,风险程度与人口密度分布、地表遮蔽效果、地面障碍物高度分布、城市禁飞区的划设及UAV飞行高度密切相关;UAV在运行中应用地面风险地图,有利于识别所飞越区域的风险程度,避开高风险区域,提高在城市低空运行的安全性。

     

  • 图 1  UAV下降轨迹

    Figure 1.  UAV descent trajectory

    图 2  M210-RTK下降事件的2D PDF

    Figure 2.  2D PDF of M210-RTK descent event

    图 3  UAV坠落事故影响区域示意图

    Figure 3.  Schematic diagram of impact area in UAV fall accident

    图 4  地面风险地图生成步骤

    Figure 4.  Steps for generating ground risk map

    图 5  区域遮蔽效应层

    Figure 5.  Regional sheltering factor layer

    图 6  成都市禁飞区示例

    Figure 6.  Example of no-fly zones around city of Chengdu

    图 7  建筑物高度分布

    Figure 7.  Building height distribution

    图 8  障碍物层

    Figure 8.  Obstacle layer

    图 9  特殊区域的安全飞行范围

    Figure 9.  Safe flying ranges for special areas

    图 10  研究区域栅格化

    Figure 10.  Rasterization of study area

    图 11  研究区域的风分布

    Figure 11.  Wind distribution of study area

    图 12  地面人员伤亡风险层生成过程框架

    Figure 12.  Framework of the process of generating the ground fatality risk layer

    图 13  多层叠加式的地面风险地图生成过程

    Figure 13.  Process of generating ground risk map with multiple layers

    图 14  地面风险地图

    Figure 14.  Ground risk map

    表  1  特殊区域风险等级分类

    Table  1.   Classification of risk levels in special areas

    特殊区域 风险等级
    发电厂、大型车站、易燃易爆仓库、易发生
    火灾和水污染的区域
    高风险
    大型加油站、中型车站、中型码头和港口区域 中风险
    医院、学校等人群聚集区 低风险
    其他正常区域 安全
    下载: 导出CSV

    表  2  风险等级评定指标

    Table  2.   Risk levels rating indicators

    风险值 风险等级
    <1 高风险
    <10−4 中风险
    <10−5 低风险
    <10−6 安全或无风险
    下载: 导出CSV

    表  3  模型参数

    Table  3.   Model parameters

    λevent m/kg v0/(m·s−1) h0/m g/(m·s−1) 空气阻力
    系数Cd
    6.71×10−6 6.14 20 N (100, 2) 9.8 0.4
    |vwind|/(m·s−1) rp/m RUAV/m hp/m |vmax|/(m·s−1) β/J
    N (10, 2) 0.25 0.44 1.65 23 34
    下载: 导出CSV
  • [1] 陈志杰. 依法助推低空经济发展[EB/OL]. (2023-06-29)[2024-03-24]. http://www.gov.cn/zhengce/202306/content_6888958.htm.

    CHEN Z J. Promoting low-altitude economic development in accordance with the law[EB/OL]. (2023-06-29)[2024-03-24]. http://www.gov.cn/zhengce/202306/content_6888958.htm(in Chinese).
    [2] XIA C Y, YANG C R, XUE K, et al. A conflict risk analysis of MAV\UAV flight in shared airspace[J]. International Journal of Aerospace Engineering, 2021, 2021: 1692896.
    [3] 韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望[J]. 中国民航大学学报, 2021, 39(1): 40-47. doi: 10.3969/j.issn.1674-5590.2021.01.008

    HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk[J]. Journal of Civil Aviation University of China, 2021, 39(1): 40-47(in Chinese). doi: 10.3969/j.issn.1674-5590.2021.01.008
    [4] MELNYK R, SCHRAGE D, VOLOVOI V, et al. A third-party casualty risk model for unmanned aircraft system operations[J]. Reliability Engineering & System Safety, 2014, 124: 105-116.
    [5] DENNEY E, PAI G, JOHNSON M. Towards a rigorous basis for specific operations risk assessment of UAS[C]//Proceedings of the IEEE/AIAA 37th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2018: 1-10.
    [6] MARTINEZ C, SANCHEZ-CUEVAS P J, GERASIMOU S, et al. SORA methodology for multi-UAS airframe inspections in an airport[J]. Drones, 2021, 5(4): 141. doi: 10.3390/drones5040141
    [7] WYSZYWACZ W. Easy risk assessment for unmanned aircraft systems: outline of the method[J]. Transactions on Aerospace Research, 2022, 22(3): 32-47. doi: 10.2478/tar-2022-0015
    [8] HAN P, YANG X Y, ZHAO Y F, et al. Quantitative ground risk assessment for urban logistical unmanned aerial vehicle (UAV) based on Bayesian network[J]. Sustainability, 2022, 14(9): 5733. doi: 10.3390/su14095733
    [9] 王文涛, 甘旭升, 吴亚荣, 等. 考虑不确定性的低空无人机运行风险评估方法[J]. 现代防御技术, 2022, 50(5): 14-21.

    WANG W T, GAN X S, WU Y R, et al. Low-altitude UAV operation risk assessment method considering the uncertainty[J]. Modern Defence Technology, 2022, 50(5): 14-21(in Chinese).
    [10] JIAO Q Y, LIU Y S, ZHENG Z G, et al. Ground risk assessment for unmanned aircraft systems based on dynamic model[J]. Drones, 2022, 6(11): 324. doi: 10.3390/drones6110324
    [11] 韩鹏, 张冰玉. 航迹误差对无人机坠地伤人风险评估的影响[J]. 中国安全科学学报, 2021, 31(2): 106-111.

    HAN P, ZHANG B Y. Effect of track error on safety risk assessment of UAV ground impact[J]. China Safety Science Journal, 2021, 31(2): 106-111(in Chinese).
    [12] SHAO P C. Risk assessment for UAS logistic delivery under UAS traffic management environment[J]. Aerospace, 2020, 7(10): 140. doi: 10.3390/aerospace7100140
    [13] LA COUR-HARBO A. Quantifying risk of ground impact fatalities for small unmanned aircraft[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 367-384.
    [14] LA COUR-HARBO A. Ground impact probability distribution for small unmanned aircraft in ballistic descent[C]//Proceedings of the International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2020: 1442-1451.
    [15] KIN H L.Framework for urban traffic management of unmanned aircraft system (u TM-UAS)[EB/OL]. (2017-09-22)[2024-03-28]. http://www.icao.int/Meetings/UAS2017/Documents/Kim%20Huat%2OLo_Singapore_UTM_%20Day%201.pdf.
    [16] PANG B Z, HU X T, DAI W, et al. UAV path optimization with an integrated cost assessment model considering third-party risks in metropolitan environments[J]. Reliability Engineering & System Safety, 2022, 222: 108399.
    [17] PRIMATESTA S, RIZZO A, LA COUR-HARBO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020, 97: 489-509.
    [18] 胡莘婷, 戴福青. 基于城区行人安全的无人机运行风险评估[J]. 中国安全科学学报, 2020, 30(8): 137-142.

    HU X T, DAI F Q. Risk assessment model for UAV operation considering safety of ground pedestrians in urban areas[J]. China Safety Science Journal, 2020, 30(8): 137-142(in Chinese).
    [19] HU X T, PANG B Z, DAI F Q, et al. Risk assessment model for UAV cost-effective path planning in urban environments[J]. IEEE Access, 2020, 8: 150162-150173.
    [20] 曲欣宇, 叶博嘉, 王华中, 等. 基于风险地图的城市物流无人机路径规划研究[J]. 航空计算技术, 2024, 54(1): 87-91.

    QU X Y, YE B J, WANG H Z, et al. Research on global path planning method for urban logistics UAV based on risk maps[J]. Aeronautical Computing Technique, 2024, 54(1): 87-91(in Chinese).
    [21] LI Q Y, WU Q G, TU H Y, et al. Ground risk assessment for unmanned aircraft focusing on multiple risk sources in urban environments[J]. Processes, 2023, 11(2): 542. doi: 10.3390/pr11020542
    [22] LIU Y, ZHANG X J, WANG Z, et al. Ground risk assessment of UAV operations based on horizontal distance estimation under uncertain conditions[J]. Mathematical Problems in Engineering, 2021, 2021: 3384870.
    [23] 中国民用航空局航空器适航审定司. 城市场景轻小型无人驾驶航空器物流航线划设规范[EB/OL]. (2022-07-29)[2024-03-28]. http://www.caac.gov.cn/big5/www.caac.gov.cn/XXGK/XXGK/BZGF/HYBZ/202208/P020220811600885528858.pdf.

    Aircraft Airworthiness Certification Department, Civil Ariation Administration of China. Route design specification of the light-small unmanned aircraft system for urban logistics[EB/OL]. (2022-07-29)[2024-03-28]. http://www.caac.gov.cn/big5/www.caac.gov.cn/XXGK/XXGK/BZGF/HYBZ/202208/P020220811600885528858.pdf(in Chinese).
    [24] 朱元军, 李妍, 高子昂. 可接受风险水平下城市空域无人机路径规划方法研究综述[J]. 西华大学学报 (自然科学版), 2022, 41(1): 7-12.

    ZHU Y J, LI Y, GAO Z A. A review of UAS route planning in urban airspace with acceptable risk levels[J]. Journal of Xihua University (Natural Science Edition), 2022, 41(1): 7-12(in Chinese).
    [25] Joint Authorities for Rulemaking of Unmanned Systems. JARUS guidelines on specific operations risk assessment (SORA) V2.0[EB/OL]. (2019-01-30)[2024-03-28]. http://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf.
    [26] 中国民用航空局航空器适航审定司. 民用无人驾驶航空器系统适航审定分级分类和系统安全性分析指南[EB/OL]. (2022-11-21)[2024-03-28]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/202302/P020230213505366854054.pdf.

    Aircraft Airworthiness Certification Department, Civil Ariation Administration of China. Guidelines for civil unmanned aerial vehicle system airworthiness validation classification and system safety analysis [EB/OL]. (2022-11-21)[2024-03-28]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/202302/P020230213505366854054.pdf.(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  251
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-08-06
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答