留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FAR 25附录C结冰气象探测数据处理方法

张文强 陈奕屹 雷国强 王光雨 支亚非 毛雪瑞

张文强,陈奕屹,雷国强,等. FAR 25附录C结冰气象探测数据处理方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3324-3336 doi: 10.13700/j.bh.1001-5965.2023.0569
引用本文: 张文强,陈奕屹,雷国强,等. FAR 25附录C结冰气象探测数据处理方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3324-3336 doi: 10.13700/j.bh.1001-5965.2023.0569
ZHANG W Q,CHEN Y Y,LEI G Q,et al. Data processing methodology of icing meteorological detection in FAR 25 Appendix C[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3324-3336 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0569
Citation: ZHANG W Q,CHEN Y Y,LEI G Q,et al. Data processing methodology of icing meteorological detection in FAR 25 Appendix C[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3324-3336 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0569

FAR 25附录C结冰气象探测数据处理方法

doi: 10.13700/j.bh.1001-5965.2023.0569
详细信息
    通讯作者:

    E-mail:xmao@bit.edu.cn

  • 中图分类号: V219

Data processing methodology of icing meteorological detection in FAR 25 Appendix C

More Information
  • 摘要:

    结冰会破坏飞机的气动外形,导致升力下降阻力增加,飞机的操纵性和稳定性下降,严重影响飞行安全。考虑到FAR 25附录C的使用有一定的地区和季节的局限性,同时更多更复杂的结冰环境的发现需要对附录C进行不断地修订,因此,总结和探索气象探测的数据处理方法能够对编制和改进中国的结冰适航审定规章提供指导。介绍附录C的编制背景,总结传统结冰气象探测仪器的测量原理及数据处理方法,重点解释了如何将测量到的气象数据转化为可供查询的包线图;从结冰数据库建立、提升仪器测量精度、无人机防冰3方面给出当前面临的挑战与未来发展趋势,从而为气象探测技术的发展和未来发展方向提供科学的指导。

     

  • 图 1  结冰条件演化过程及防冰系统发展的时间线

    Figure 1.  Evolution of icing conditions and development timeline of anti-icing system

    图 2  连续最大(层云)大气结冰状态LWC与MED的关系[3]

    Figure 2.  Continuous maximum (stratiform clouds) atmospheric Icing conditions (liquid water content vs mean effective drop diameter) [3]

    图 3  连续最大(层云)大气结冰状态环境温度与气压高度的关系[3]

    Figure 3.  Continuous maximum (stratiform clouds) atmospheric icing conditions (ambient temperature vs pressure altitude) [3]

    图 4  连续最大(层云)大气结冰状态LWC系数与云层水平范围的关系[3]

    Figure 4.  Continuous maximum (stratiform clouds) atmospheric icing conditions (liquid water content factor vs cloud horizontal extent) [3]

    图 5  间断最大(积云)大气结冰状态LWC与MED的关系[3]

    Figure 5.  Intermittent maximum (cumuliform clouds) atmospheric icing conditions (liquid water content vs mean effective drop diameter) [3]

    图 6  间断最大(积云)大气结冰状态环境温度与气压高度的关系[3]

    Figure 6.  Intermittent maximum (cumuliform clouds) atmospheric icing conditions (ambient temperature vs pressure altitude) [3]

    图 7  间断最大(积云)大气结冰状态LWC系数与云层水平范围之间的关系[3]

    Figure 7.  Intermittent maximum (cumuliform clouds) atmospheric icing conditions (variation of liquid water content factor with cloud horizontal extent)[3]

    图 8  液滴MED和LWC飞行试验测量数据分布[9]

    Figure 8.  Distribution of flight measurement data for MED and LWC [9]

    图 9  飞行实测的气压高度和气温的关系[13]

    Figure 9.  Rolationship between pressure altitude and temperature from flight measurements[13]

    图 10  水平距离和LWC系数的关系[14]

    Figure 10.  Relationship between horizontal distance and LWC coefficient[14]

    图 11  旋转多圆柱测量仪[15]

    Figure 11.  Rotating multicylinders gauge[15]

    图 12  旋转多圆柱测量仪在飞机上的安装(在机身顶部伸出)[16]

    Figure 12.  Instrallation of a rotating multicylinder measuring instrument on aircraft (protruding from top of fuselage)[16]

    图 13  结冰参数数据处理步骤

    Figure 13.  Procedure for post-processing of icing parameter

    图 14  单位正面面积上的结冰质量随着平均圆柱半径的变化关系[17]

    Figure 14.  Relationship between icing mass per unit frontal area and mean cylindrical radius[17]

    图 15  $ \text{}{c}{{E}}_{\text{ω} } $-$ {1}/{{K}_{0}} $图表[17]

    Figure 15.  $ {cE}_{\text{ω} } $-$ {1}/{{K}_{0}} $ plot[17]

    图 16  液滴尺寸测量仪器(FSSP和OAP)[15]

    Figure 16.  Droplet size measuring instruments (FSSP and OAP) [15]

    图 17  相位多普勒粒子分析仪[19]

    Figure 17.  Phase Doppler particle analyzer[19]

    图 18  云粒子探头和快速云粒子探头

    Figure 18.  Cloud particle probe and fast cloud particle probe

    图 19  BCP和CDP及FSSP的对比[21]

    Figure 19.  Comparison of BCP, CDP and FSSP[21]

    图 20  安装在飞机上的BCP探头[21]

    Figure 20.  BCP mounted on airplane[21]

    图 21  安装在 NASA AFRC DC-8飞行实验室的HIWC RADAR II仪器[28]

    Figure 21.  HIWC RADAR II instruments at NASA AFRC DC-8 flight laboratory[28]

    表  1  4种结冰气象类型和其特性[2]

    Table  1.   Classes of flight icing conditions and their features[2]

    气象类型 归类 水平飞行
    距离/km
    持续时间/min
    (V=80 m/s)
    含水量 适用飞机部位
    类型I 瞬时 0.8 0.17 非常高 发动机进气道
    类型II 连续 4.8 1 发动机进气道、风挡及其他需要
    保持清晰视野的部件
    类型III 连续 连续飞行 较长 适中 飞机机翼和尾翼
    类型IV 冰雨 160.9 30 雨滴较大,温度接近冰点,但是空气总体含水量低 机身上用于测量飞行速度的皮托管等
    下载: 导出CSV

    表  2  $ {K}_{0}\varphi $估测值和标准值对应关系[17]

    Table  2.   Correspondence between estimated and standard values of $ {K}_{0}\varphi $[17]

    估测或计算的$ {K}_{0}\varphi $范围 对应的标准$ {K}_{0}\varphi $值
    200~440 200
    441~1750 1000
    17515600 3000
    560130000 10000
    下载: 导出CSV
  • [1] LONG T. Analysis of weather-related accident and incident data associated with section 14 CFR part 91 operations[J]. Collegiate Aviation Review International, 2022, 40(1): 25-39.
    [2] ALUN R J, LEWIS W. Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment: NACA-TN-1855[R]. Washington, D. C.: National Aeronautics and Space Administration, 1949.
    [3] REGULATIONS F A. Part 25-Airworthiness standards: transport category airplanes Appendix C: 4080-29-FR-18291[R]. Washington, D. C.: Federal Aviation Administration, 1965.
    [4] JECK R K. Icing design envelopes (14 CFR Parts 25 and 29, Appendix C) converted to a distance-based format: DOT/FAA/AR-00/30 [R]. Washington, D. C.: Federal Aviation Administration, 2002.
    [5] JECK R. Converting appendix C to other variables: DOT/FAA/AR-00/30 [R]. Warrendal: SAE International, 2003.
    [6] JECK R K. A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions: DOT/FAA/AR-01/91 [R]. Washington, D. C.: Federal Aviation Administration, 2001.
    [7] Federal Aviation Administration. AC 25.1419-1A - certification of transport category airplanes for flight in icing conditions: 25.1419-1A [R]. Washington, D. C.: Federal Aviation Administration, 2002.
    [8] 季发明, 黄子彰, 浅析飞机适航规章FAR25第121修正案[J], 黑龙江省政法管理干部学院学报, 2015, 26: 66.

    JI F M, HUANG Z Z. A brief analysis of the aircraft airworthiness regulation FAR25 amendment to 121[J]. Journal of Heilongjiang Provincial Political and Legal Management Cadre College, 2015, 26: 66(in Chinese).
    [9] LEWIS W. A flight investigation of the meteorological conditions conducive to the formation of ice on airplanes: NACA-TN-1393[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1947.
    [10] LANGMUIR I, BLODGETT K. Mathematical investigation of water droplet trajectories: 5418[R]. Champaign: University of Illinlis at Urbana-Champaign, 1946.
    [11] IDE R. Comparison of liquid water content measurement technquies in an icing wind tunnel: DTIC ADA371598[R]. Washington, D. C.: National Aeronautics and Space Administration, 1999.
    [12] HILL E. Overview of federal aviation administration aviation safety research for aircraft icing[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [13] HACKER, P T, ROBERT G D. A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice-protection equipment: NACA-TN-2569[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1951.
    [14] LEWIS W, NORMAN R B. A probability analysis of the meteorological factors conducive to aircraft icing in the United States: NACA-TN-2738[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1952.
    [15] IDE R F, PAUL RICHTER G. Comparison of icing cloud instruments for 1982-1983 icing season flight pro gram: A82-16098[R]. Washington, D. C.: National Aeronautics and Space Administration, 1984.
    [16] BRUN R J, LEWIS W, PERKINS P J, et al. Impingement of cloud droplets on a cylinder and procedure for measuring liquid-water content and droplet sizes in supercooled clouds by rotating multicylinder method: NACA-TR-1215 [R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1955.
    [17] LEWIS W, PORTER J P, RINALDO J B. Procedure for measuring liquid-water content and droplet sizes in supercooled clouds by rotating multicylinder method: NACA-RM-E53D23[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1953.
    [18] LEWIS W, DWIGHT B K, CHARLES P S. A further investigation of the meteorological conditions conducive to aircraft icing: NACA-TN-1424[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1947.
    [19] ALBRECHT H E, BORYS M, DAMASCHKE N, et al. LaserDoppler and phase Doppler measurement techniques[M]. Berlin: Springer, 2003.
    [20] ESPOSITO B, MARRAZZO M. Application of PDPA system with different optical configuration to the IWT calibration[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [21] RUDOFF R E, BACHALO W, OLDENBURG J, et al. Liquid water content measurements using the phase doppler particle analyzer in the NASA lewis icing research tunnel: AIAA PAPER 93-0298 [R]. Reston: AIAA, 1993.
    [22] 陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22-29.

    CHEN S Y, GUO X D, WANG Z X, et al. Preliminary research on size measurement of super-cooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29(in Chinese).
    [23] GLIENKE S, MEI F. Fast cloud droplet probe (FCDP) instrument handbook: DOE/SC-ARM-TR-238[R]. Washington, D. C.: United States Department Energy, 2020.
    [24] FABER S, FRENCH J R, JACKSON R. Laboratory and in-flight evaluation of measurement uncertainties from a commercial cloud Droplet probe (CDP)[J]. Atmospheric Measurement Techniques, 2018, 11(6): 3645-3659. doi: 10.5194/amt-11-3645-2018
    [25] MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [26] REEHORST A, BRINKER D, POLITOVICH M, et al. Progress towards the remote sensing of aircraft icing hazards[C]//Proceedings of the Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support. Bellingham: SPIE, 2008.
    [27] VIVEKANANDAN J, ZHANG G, POLITOVICH M K. An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(11): 1787-1798. doi: 10.1175/1520-0426(2001)018<1787:AAODSA>2.0.CO;2
    [28] RATVASKY T, HARRAH S, STRAPP J W, et al. Summary of the high ice water content (HIWC) RADAR flight campaigns: DOT/FAA/TC–19/28[R]. Warrendal: SAE International, 2019.
    [29] ZOLLO A L, BUCCHIGNANI E. A Tool for remote detection and nowcasting of in-flight icing using satellite data[C]//Proceedings of the International Conference on Icing of Aircraft, Engines, and Srrucetukes. Warreadale: SAE International, 2023.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  78
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 录用日期:  2023-12-05
  • 网络出版日期:  2023-12-28
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答