留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子模型的复合材料主承力混杂连接结构失效分析

李星 黎增山 邓凡臣 聂磊 张田

李星,黎增山,邓凡臣,等. 基于子模型的复合材料主承力混杂连接结构失效分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3286-3298 doi: 10.13700/j.bh.1001-5965.2023.0555
引用本文: 李星,黎增山,邓凡臣,等. 基于子模型的复合材料主承力混杂连接结构失效分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3286-3298 doi: 10.13700/j.bh.1001-5965.2023.0555
LI X,LI Z S,DENG F C,et al. Sub-model based failure analysis of composite primary load-bearing hybrid joint structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3286-3298 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0555
Citation: LI X,LI Z S,DENG F C,et al. Sub-model based failure analysis of composite primary load-bearing hybrid joint structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3286-3298 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0555

基于子模型的复合材料主承力混杂连接结构失效分析

doi: 10.13700/j.bh.1001-5965.2023.0555
基金项目: 

国家重点研发计划(2022YFB4301002)

详细信息
    通讯作者:

    E-mail:lizengshan@cq5520.com

  • 中图分类号: V257;TB332

Sub-model based failure analysis of composite primary load-bearing hybrid joint structure

Funds: 

National Key Research and Development Program of China (2022YFB4301002)

More Information
  • 摘要:

    以民机复合材料机翼翼根下壁板长桁对接结构为研究对象,通过建立单钉连接三维子模型并考虑材料损伤,分析连接失效机理及非线性载荷-变形关系;通过考虑非线性连接刚度的整体有限元模型,计算试验件非线性钉载分配,并预测破坏载荷。解决了直接建立全尺寸三维模型、考虑损伤等引起的计算效率低、收敛性差等问题。试验结果表明:预测破坏载荷为试验破坏载荷的93.6%,预测破坏模式为单侧多排紧固件同时剪切断裂,与试验破坏模式一致,验证了所提方法的有效性。相比之下,采用线性连接刚度模型预测的破坏载荷为试验破坏载荷的81.9%,预测失效模式为第1排紧固件断裂,预测破坏载荷、预测破坏模式均与试验结果存在较大差异。

     

  • 图 1  复合材料机翼翼根下壁板对接剖面

    Figure 1.  Cross section of composite wing root lower panel butt joint

    图 2  翼根长桁对接试验件示意图

    Figure 2.  Schematic diagram of wing root stringer joint specimen

    图 3  翼根长桁对接试验件子模型建模思路

    Figure 3.  Sub-model modeling method of wing root stringer joint specimen

    图 4  子模型示意图

    Figure 4.  Schematic diagram of sub-model

    图 5  金属材料单向拉伸塑性曲线

    Figure 5.  Unidirectional tensile plastic curves of metal materials

    图 6  子模型加载点载荷-位移曲线

    Figure 6.  Load-displacement curves of sub-model loading point

    图 7  第1排连接子模型渐进损伤过程

    Figure 7.  Progressive damage of the 1st row joint sub-model

    图 8  第4排连接子模型渐进损伤过程

    Figure 8.  Progressive damage of the 4th row joint sub-model

    图 9  第1排子模型考虑不同损伤类型的载荷-位移曲线

    Figure 9.  Load-displacement curves of the 1st row sub-model considering different damage types

    图 10  第1排连接考虑不同损伤类型子模型的破坏形式

    Figure 10.  Failure modes of the 1st row sub-model considering different damage types

    图 11  子模型连接刚度计算示意图

    Figure 11.  Schematic diagram of sub-model joint stiffness calculation

    图 12  整体有限元模型示意图

    Figure 12.  Schematic diagram of global finite element model

    图 13  非线性连接刚度钉载计算结果

    Figure 13.  Bolt load calculation results using non-linear joint stiffness

    图 14  线性连接刚度钉载计算结果

    Figure 14.  Bolt load calculation results using linear joint stiffness

    图 15  试验加载示意图

    Figure 15.  Schematic diagram of test loading

    图 16  试验件破坏模式

    Figure 16.  Failure mode of test specimen

    图 17  试验件应变片布置

    Figure 17.  Specimen strain gages arrangement

    图 18  试验件远端和对称面处应变计算结果与试验结果对比

    Figure 18.  Comparison of calculated strain results with experimental results at location of far field and symmetry plane of specimen

    图 19  试验件第1排和第2排连接处应变计算结果与试验结果对比

    Figure 19.  Comparison of calculated strain results with experimental results at location of the 1st row joint and the 2nd row joint of specimen

    图 20  试验件第3排和第4排连接处应变计算结果与试验结果对比

    Figure 20.  Comparison of calculated strain results with experimental results at location of the 3rd row joint and the 4th row joint of specimen

    表  1  有限元模型材料性能参数[14-15]

    Table  1.   Material property parameters of finite element model[14-15]

    材料 计算参数 数值
    复合
    材料
    沿纤维方向弹性模量E11/GPa 163.5
    垂直纤维方向弹性模量E22/GPa 9.00
    面内剪切模量G12/GPa 4.14
    面内泊松比ν12 0.319
    厚度t/mm 0.191
    单层0°拉伸强度/MPa 3071.0
    单层0°压缩强度/MPa 1747.0
    单层90°拉伸强度/MPa 88.0
    单层90°压缩强度/MPa 271.0
    单层面内剪切强度/MPa 131.0
    Ti-6Al-4V 拉压平均弹性模量E/MPa 116522
    剪切模量G/MPa 44816
    泊松比ν 0.31
    板材拉伸极限强度/MPa 931
    板材剪切极限强度/MPa 545
    紧固件拉伸极限强度/MPa 1103
    紧固件剪切极限强度/MPa 655
    7050-T7451 拉压平均弹性模量E/MPa 71016
    剪切模量G/MPa 26890
    泊松比ν 0.33
    拉伸极限强度/MPa 510
    剪切极限强度/MPa 290
    下载: 导出CSV

    表  2  复合材料损伤后性能退化方案

    Table  2.   Performance degradation scheme of composite material after damage

    失效模式 退化方案
    E11 E22 E33 G12 G13 G23 ν12 ν13 ν23
    完好 1 1 1 1 1 1 1 1 1
    纤维失效 0.01 1 1 0.01 0.01 1 0.01 0.01 1
    基体失效 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    纤维失效+基体失效 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] 谢鸣九. 复合材料连接技术[M]. 上海: 上海交通大学出版社, 2016: 129-235.

    XIE M J. Joints for composites materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 129-235(in Chinese).
    [3] HART-SMITH L J. Bonded-bolted composite joints[J]. Journal of Aircraft, 1985, 22(11): 993-1000. doi: 10.2514/3.45237
    [4] GRAY P J, MCCARTHY C T. A highly efficient user-defined finite element for load distribution analysis of large-scale bolted composite structures[J]. Composites Science and Technology, 2011, 71(12): 1517-1527.
    [5] ZHANG F, HU Z D, GAO L M, et al. Investigation on in-plane shear behavior of large-size composite plates with multi-bolt joints[J]. Composite Structures, 2020, 232: 111553. doi: 10.1016/j.compstruct.2019.111553
    [6] SASIKUMAR A, GUERRERO J M, QUINTANAS-COROMINAS A, et al. Numerical study to understand thermo-mechanical effects on a composite-aluminium hybrid bolted joint[J]. Composite Structures, 2021, 275: 114396. doi: 10.1016/j.compstruct.2021.114396
    [7] 李玺, 李亚智, 磨承杰, 等. 基于连续损伤力学的复合材料多钉连接失效分析和试验研究[J]. 机械强度, 2022, 44(4): 911-920.

    LI X, LI Y Z, MO C J, et al. Failure analysis and experimental study of composite multi-pin connections based on continuum damage mechanics[J]. Journal of Mechanical Strength, 2022, 44(4): 911-920 (in Chinese).
    [8] 黄河源, 赵美英, 万小朋, 等. 一种复合材料螺栓连接结构非线性刚度模型及应用[J]. 西北工业大学学报, 2018, 36(1): 66-73. doi: 10.3969/j.issn.1000-2758.2018.01.010

    HUANG H Y, ZHAO M Y, WAN X P, et al. A composite bolted joints non-linear stiffness model and its application[J]. Journal of Northwestern Polytechnical University, 2018, 36(1): 66-73(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.01.010
    [9] 蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238.

    CAI Q Y, ZHAO Q. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238(in Chinese).
    [10] 张岐良, 曹增强. 复合材料螺接性能的影响因素研究[J]. 航空学报, 2012, 33(4): 755-762.

    ZHANG Q L, CAO Z Q. Study on factors influencing the performance of composite bolted connections[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 755-762(in Chinese).
    [11] 雷凯, 王彬文, 成竹, 等. 飞机多钉壁板混合结构热应力分析与验证[J]. 应用力学学报, 2023, 40(1): 40-47. doi: 10.11776/j.issn.1000-4939.2023.01.006

    LEI K, WANG B W, CHENG Z, et al. Thermal stress analysis and verification of aircraft multi-bolt hybrid panel structure[J]. Chinese Journal of Applied Mechanics, 2023, 40(1): 40-47(in Chinese). doi: 10.11776/j.issn.1000-4939.2023.01.006
    [12] 贾宝惠, 方嘉晨, 武涛, 等. 预紧力影响下的复合材料螺接连接件失效安全性分析[J]. 机械科学与技术, 2025, 44(7): 1290-1300.

    JIA B H, FANG J C, WU T, et al. Failure safety analysis of composite screw connection under the influence of pre-tightening force[J]. Mechanical Science and Technology for Aerospace Engineering, 2025, 44(7): 1290-1300(in Chinese).
    [13] 汤平, 李星. 插入式机翼下壁板对接附加弯矩研究[J]. 航空学报, 2019, 40(2): 522436.

    TANG P, LI X. Additional bending moment in lower panel butt-joint of inserted wing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522436(in Chinese).
    [14] 高阳. 某型飞机中央翼关键连接区混杂结构试验仿真与分析[D]. 南京: 南京麻豆精品秘 国产传媒, 2020: 19-20.

    GAO Y. Experimental simulation and analysis of hybrid structure in key connection area of central wing of an aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 19-20(in Chinese).
    [15] RICE R C, JACKSON J, BAKUCKAS J, et al. Metallic materials properties development and standardization (MMPDS)[M]. Washington, D. C. : U. S. Department of Transportation Federal Aviation Administration, 2003.
    [16] ASTM. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M-23[S]. Philadelphia: ASTM International, 2017: 1-31.
    [17] HUTH H. Influence of fastener flexibility on the prediction of load transfer and fatigue life for multiple-row joints[C]//Proceedings of the Fatigue in Mechanically Fastened Composite and Metallic Joints. Philadelphia: ASTM, 1986: 221-250.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  55
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 录用日期:  2023-11-10
  • 网络出版日期:  2023-12-13
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答