留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料蒙皮搭接结构电气性能分析

杨占刚 魏宇昊 石旭东

杨占刚,魏宇昊,石旭东. 复合材料蒙皮搭接结构电气性能分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3313-3323 doi: 10.13700/j.bh.1001-5965.2023.0507
引用本文: 杨占刚,魏宇昊,石旭东. 复合材料蒙皮搭接结构电气性能分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3313-3323 doi: 10.13700/j.bh.1001-5965.2023.0507
YANG Z G,WEI Y H,SHI X D. Electrical properties analysis of composite materials skin bonding structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3313-3323 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0507
Citation: YANG Z G,WEI Y H,SHI X D. Electrical properties analysis of composite materials skin bonding structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3313-3323 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0507

复合材料蒙皮搭接结构电气性能分析

doi: 10.13700/j.bh.1001-5965.2023.0507
基金项目: 

国家自然科学基金(51407185);天津市航空装备安全性与适航技术创新中心开放基金(JCZX-2023-KF-06)

详细信息
    通讯作者:

    E-mail:xdshi@cauc.edu.cn

  • 中图分类号: V261.97

Electrical properties analysis of composite materials skin bonding structures

Funds: 

National Natural Science Foundation of China (51407185); Supported by the Open Fund of Tianjin Aviation Equipment Safety and Airworthiness Technology Innovation Center (JCZX-2023-KF-06)

More Information
  • 摘要:

    现代商业飞机中复合材料的使用率逐步上升,然而较低的电导率限制了其在蒙皮结构中的应用,一般还需搭接额外的导电结构以增强蒙皮内电流的导通性能。为分析复合材料飞机蒙皮电气特性及其影响因素,对蒙皮结构之间的搭接进行建模,并通过建立等效电路分析搭接结构电气特性影响机理。基于所构建的复合材料飞机蒙皮典型搭接结构模型,计算结构件类型、搭接方式对蒙皮电气特性的影响,并分析不同搭接方式受雷电间接效应的影响情况。计算及仿真结果表明:结构件的材质、形状及尺寸对蒙皮电气性能有一定影响,采取恰当的搭接方式可有效减小蒙皮结构阻抗、提升飞机雷电间接效应屏蔽性能。

     

  • 图 1  复合材料飞机蒙皮搭接实物

    Figure 1.  Physical odject of composite aircraft skin lap

    图 2  蒙皮内部电流主要路径示意图

    Figure 2.  Schematic diagram of main current path inside skin

    图 3  CFRP板材与金属连接件等效电路

    Figure 3.  Equivalent circuit of CFRP sheets and metal connectors

    图 4  复合材料飞机蒙皮常见搭接方式

    Figure 4.  Common lap splicing methods for composite aircraft skins

    图 5  单搭接时等效电路

    Figure 5.  Equivalent circuit for single lap connection

    图 6  电磁波穿过介质时的电磁损耗

    Figure 6.  Electromagnetic loss in electromagnetic waves passing through medium

    图 7  粗糙凸起点侧视图

    1. 螺栓;2. 凹形垫圈;3. 树脂;4. 延展金属箔;5. CFRP;6. 金属氧化膜;7. 金属连接件。

    Figure 7.  Side view of rough raised points

    图 8  螺栓附近区域电流流向

    Figure 8.  Current flow in area near bolt

    图 9  单搭接模型侧视图

    1. 树脂;2. 螺栓;3. 平垫圈;4. 金属铜层;5. CFRP;6. 氧化铝层。

    Figure 9.  Side view of single lap model

    图 10  单搭接模型等效电路

    Figure 10.  Equivalent circuit of single lap model

    图 11  金属连接件材质对蒙皮整体结构阻抗影响

    Figure 11.  Effect of metal connector material on overall structural impedance of skin

    图 12  金属连接件材质对蒙皮整体结构阻抗影响

    Figure 12.  Effect of metal connector material on overall structural impedance of skin

    图 13  金属连接件材质对蒙皮整体结构阻抗影响

    Figure 13.  Effect of metal connector material on overall structural impedance of skin

    图 14  延展金属铜箔厚度对蒙皮阻抗影响

    Figure 14.  Effect of extended metal copper foil thickness on skin impedance

    图 15  蒙皮搭接结构模型

    Figure 15.  Model of skin lap structure

    图 16  单盖板对接时蒙皮结构电气性能表现

    Figure 16.  Electrical performance of skin under single cover docking

    图 17  蒙皮单搭接时的电气性能表现

    Figure 17.  Electrical performance of skin under single lap joint

    图 18  双盖板对接时紧固件附近电流流向及密度分布

    Figure 18.  Current flow direction and density distribution near the fastener under double cover docking

    图 19  仿真模型及结果

    Figure 19.  Simulation model and results

    图 20  雷电电磁脉冲信号波形

    Figure 20.  Waveform of lightning electromagnetic pulse signal

    图 21  复合材料飞机整机模型

    Figure 21.  Complete composite aircraft model

    图 22  机体周围空间电磁场情况

    Figure 22.  Electromagnetic field conditions around airframe

    图 23  整机蒙皮内部线缆感应电流

    Figure 23.  Cable-induced current inside entire aircraft skin

    表  1  螺栓与凹形垫圈尺寸

    Table  1.   Bolt and concave washer size

    参数 数值 参数 数值
    沉头螺栓总长度/mm 18 凹形垫圈高度/mm 2.2
    沉头螺杆直径/mm 6.4 凹形垫圈内径/mm 6.45
    沉头螺栓头直径/mm 9 凹形垫圈外径/mm 19
    沉头螺栓头厚度/mm 0.5 凹形垫圈厚度/mm 0.4
    下载: 导出CSV

    表  2  结构件材质及其电导率

    Table  2.   Materials of structural parts and their electrical conductivity

    结构件名称 材质
    延展金属箔
    CFRP板材 CFRP
    金属氧化膜 氧化铝
    金属连接件
    沉头螺栓
    凹形垫圈
    下载: 导出CSV

    表  3  单搭接模型紧固件尺寸

    Table  3.   Single lap model fastener size

    参数 数值 参数 数值
    螺栓总长度/mm 23.14 垫圈高度/mm 1.5
    螺杆直径/mm 16 垫圈内径/mm 16
    螺栓头边长/mm 13.86 垫圈外径/mm 20
    螺栓头厚度/mm 3 垫圈厚度/mm 1.5
    下载: 导出CSV

    表  4  单搭接模型等效阻值情况

    Table  4.   Equivalent resistance of single lap model

    参数 阻值/Ω 参数 阻值/Ω
    Rcop 3.96×10−5 RAl_1 1.10×10−5
    Rcop_by_1Rcop_by_10 1.58×10−5 RAl_by_1RAl_by_10 1.89×10−5
    RCFRP 3.17×10−2 RAl_2 5.96×10−6
    Rcop_by_2Rcop_by_9 3.96×10−5 RAl_by_2RAl_by_9 4.72×10−6
    Rsteel 2.04×10−5 Rcop_by_11Rcop_by_18 1.25×10−5
    下载: 导出CSV

    表  5  金属连接件材质及对应电导率

    Table  5.   Metal connector material and corresponding conductivity

    材质 电导率/(S·m−1)
    5.998×107
    3.03×107
    氧化铝 0.01
    7.41×105
    下载: 导出CSV

    表  6  金属箔材质及对应电导率

    Table  6.   Metal foil material and corresponding conductivity

    材质 电导率/(S·m−1)
    5.998×107
    3.03×107
    1.43×107
    7.41×105
    下载: 导出CSV

    表  7  搭接方式对蒙皮电气性能的影响

    Table  7.   Effect of lap method on electrical performance of skin

    搭接方式 蒙皮整体搭接
    结构阻抗/μΩ
    表面电流密度模的
    极大值/(A·m−2)
    电场模的
    极大值/(V·m−1)
    单搭接 122.216 30750 0.705
    单盖板对接 61.114 12650 0.396
    双盖板对接 20.935 13870 0.034
    下载: 导出CSV

    表  8  不同材质屏蔽层下芯线电流情况

    Table  8.   Core current under different shield materials

    材质 电流/10−6 A
    4.777
    2.647
    3.436
    下载: 导出CSV

    表  9  搭接方式对线缆感应电流和紧固件电流的影响

    Table  9.   Effect of lap splice method on cable-induced current and fastener current

    搭接方式 同轴线缆感应
    电流峰值/mA
    紧固件电流密度
    峰值/(dBA·m−1)
    双盖板对接 76.519 80.938
    单盖板对接 177.062 88.414
    下载: 导出CSV
  • [1] JOSÉ A, T G F, BENTO S D M, et al. An innovative approach for integrated airline network and aircraft family optimization[J]. Chinese Journal of Aeronautics, 2020, 33(2): 634-663. doi: 10.1016/j.cja.2019.10.004
    [2] JAWAID M, THARIQ M. Sustainable composites for aerospace applications[M]. Cambridge: Woodhead Publishing, 2018: 1-18.
    [3] PARVEEZ B, KITTUR M I, BADRUDDIN I A, et al. Scientific advancements in composite materials for aircraft applications: a review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [4] JONES C E, SZTYKIEL M, PENA-ALZOLA R, et al. Correction: grounding topologies for resilient, integrated composite electrical power systems for future aircraft applications[C]//Proceedings of the AIAA Propulsion and Energy Forum. Reston: AIAA, 2019.
    [5] 赵中杰. 结构-导电复合材料的制备及其导电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHAO Z J. Preparation and conductivity of structure-conductive composites[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [6] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122. doi: 10.1016/j.jclepro.2018.02.048
    [7] AMAN F, CHERAGHI S H, KRISHNAN K K, et al. Study of the impact of riveting sequence, rivet pitch, and gap between sheets on the quality of riveted lap joints using finite element method[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1): 545-562.
    [8] 康永刚, 李春生, 陈希多, 等. 航空大壁板装配连接局部变形数值建模与仿真分析[J]. 航空制造技术, 2020, 63(3): 45-52.

    KANG Y G, LI C S, CHEN X D, et al. Numerical modeling and simulation analysis of local deformation for aircraft large-walled panel assembly connection[J]. Aeronautical Manufacturing Technology, 2020, 63(3): 45-52(in Chinese).
    [9] JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//Proceedings of the 18th European Conference on Power Electronics and Applications. Piscataway: IEEE Press, 2016: 1-10.
    [10] 刘国春, 郭荣辉, 秦文峰. 民用飞机复合材料结构制造与维修[M]. 北京: 清华大学出版社, 2020: 19.

    LIU G C, GUO R H, QIN W F. Manufacture and maintenance of composite structure of civil aircraft[M]. Beijing: Tsinghua University Press, 2020: 19(in Chinese).
    [11] MALINOWSKI P H, WANDOWSKI T, OSTACHOWICZ W M. Characterisation of CFRP adhesive bonds by electromechanical impedance[C]//Proceedings of the Health Monitoring of Structural and Biological Systems. Belingham: SPIE, 2014: 906415.
    [12] MALINOWSKI P H, OSTACHOWICZ W M, BRUNE K, et al. Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(10): 1592-1600.
    [13] REVEL I, PICHE A, PERES G, et al. Modeling strategy for functional current return in large CFRP structures for aircraft applications[C]//Proceedings of the International Symposium on Electromagnetic Compatibility-EMC Europe. Piscataway: IEEE Press, 2008: 1-5.
    [14] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. doi: 10.1109/TEMC.2015.2422672
    [15] GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//Proceedings of the IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471.
    [16] GOLEANU A L, GUICHON J M, DUNAND M, et al. Design and optimization techniques for the current return path in a composite aircraft[C]//Proceedings of the 14th European Conference on Power Electronics and Applications. Piscataway: IEEE Press, 2011: 1-10.
    [17] 刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(5): 885-893.

    LIU J Y, SUI Z, ZHANG Q H, et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese).
    [18] 杨占刚, 隋政, 张起浩, 等. 复合材料飞机接地回流网络网内压降分析[J]. 航空学报, 2022, 43(1): 324859.

    YANG Z G, SUI Z, ZHANG Q H, et al. Voltage drop in composite aircraft grounding and current return network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324859(in Chinese).
    [19] HEPPE A J. Computation of potential at surface above an energized grid or other electrode, allowing for non-uniform current distribution[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(6): 1978-1989.
    [20] KOUTEYNIKOFF P. Numerical computation of the grounding resistance of substations and towers[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(3): 957-965.
    [21] MOUPFOUMA F, TSE W, JALALI M. More about lightning induced effects on systems in a composite aircraft[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2013: 151-162.
    [22] 龙奕, 胡皓全, 赵家升, 等. 电磁屏蔽效能分析与实例计算[C]//第17届全国电磁兼容学术会议论文集. 广州: 中国通信学会, 2007: 68-73.

    LONG Y, HU H Q, ZHAO J S, et al. Electromagnetic shielding effectiveness analysis and example calculation[C]//Proceedings of the 17th National Conference on Electromagnetic Compatibility. Guangzhou: China Institute of Communications, 2007: 68-73(in Chinese).
    [23] 周秦汉. 复合材料飞机雷电间接效应仿真研究[D]. 南京: 南京麻豆精品秘 国产传媒, 2019.

    ZHOU Q H. Simulation study on lightning indirect effect of composite aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [24] United States of America Department of Defense. Electromagnetics environmental effects requirements for systems: MIL-STD-464A[S]. Washington, D. C.: United States of America Department of Defense, 2002.
  • 加载中
图(23) / 表(9)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  60
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-10-17
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答