留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空货运安保供应链弹性测度及优化策略

赵振武 邢肖肖 耿硕

赵振武,邢肖肖,耿硕. 航空货运安保供应链弹性测度及优化策略[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2927-2936 doi: 10.13700/j.bh.1001-5965.2023.0499
引用本文: 赵振武,邢肖肖,耿硕. 航空货运安保供应链弹性测度及优化策略[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2927-2936 doi: 10.13700/j.bh.1001-5965.2023.0499
ZHAO Z W,XING X X,GENG S. Resilience measurement and optimization strategy of air cargo secure supply chain[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2927-2936 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0499
Citation: ZHAO Z W,XING X X,GENG S. Resilience measurement and optimization strategy of air cargo secure supply chain[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2927-2936 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0499

航空货运安保供应链弹性测度及优化策略

doi: 10.13700/j.bh.1001-5965.2023.0499
基金项目: 

天津市教委科研计划项目(2021SK025);民航安全能力建设项目(14002500000019J013)

详细信息
    通讯作者:

    E-mail:1248076228@qq.com

  • 中图分类号: X951

Resilience measurement and optimization strategy of air cargo secure supply chain

Funds: 

Scientific Research Plan Project of Education Commission of Tianjin (2021SK025);Civil Aviation Safety Capacity Building Project (14002500000019J013)

More Information
  • 摘要:

    为提升航空货运安保供应链的弹性水平,针对陆路运输环节偏移指定路线的扰动情形,根据弹性三角形理论进行弹性测度。在恢复阶段,为寻求最优弹性,以弹性最大化为目标,求解恢复水平、设备数量、恢复时间约束下的最优恢复策略,即确定在空侧货站需采取的安检方式、各安检方式的货物检查量和使用的安检设备台数。以深圳宝安国际机场为例,选取路线偏移作为扰动事件进行分析。结果表明:随着货物总量或扰动时长增大,航空货运安保供应链弹性降低;安检速率、安检设备数量、违禁品检出率决定分配货物检查量时各安检方式的优先性;降低扰动市场、增大安全速率、提高违禁品检出率可提高航空货运安保供应链弹性。

     

  • 图 1  货运安保供应链流程

    Figure 1.  Operation process of air cargo secure supply chain

    图 2  航空货运安保供应链安保性能变化过程

    Figure 2.  Security performance change process of air cargo secure supply chain

    图 3  行驶路线

    Figure 3.  Driving route

    表  1  路线数据

    Table  1.   Route data

    路线 停靠点数量 事故易发路段数量 路线长度/km 拥堵长度/km
    路线1 14 0 22 1.21
    路线2 16 1 22 1.36
    路线3 9 2 26 1.68
    下载: 导出CSV

    表  2  路线风险性评估指标标准化数据

    Table  2.   Standardized data of route risk assessment indicators

    路线 停靠点数量 事故易发路段数量 路线长度/km 拥堵长度/km
    路线1 0.61 0 0.54 0.49
    路线2 0.69 0.45 0.64 0.55
    路线3 0.39 0.90 0.64 0.68
    最优 0.69 0.90 0.64 0.68
    最劣 0.39 0 0.54 0.49
    下载: 导出CSV

    表  3  路线风险性

    Table  3.   Routes risk

    路线 $ D_m^ + $ $ D_m^ - $ $ {{C}}_ m $ 风险性次序
    路线1 0.46 0.11 0.13 3
    路线2 0.23 0.28 0.36 2
    路线3 0.15 0.46 0.51 1
    下载: 导出CSV

    表  4  参数设置

    Table  4.   Parameter settings

    类型 参数 取值
    时间 ${t_{\mathrm{f}}}$/h 0
    ${t_{\text{s}}}$/h 0.2
    ${t_{\text{r}}}$/h 1.0
    ${t_{\text{d}}}$/h 1.3
    tp/h {0.4,0.6,0.8,1.0}
    资源 $ {D}_{\text{1}}、{D}_{\text{2}}、{D}_{\text{3}} $ 2、2、2
    $ {v}_{1}、{v}_{2}、{v}_{3} $ 80、65、70
    $ {P}_{1}、{P}_{2}、{P}_{3} $ 0.5、0.7、0.85
    ${S_0}$ 0.9
    $ Q $ {20,24,28,32,36}
    下载: 导出CSV

    表  5  最优弹性值和恢复策略

    Table  5.   Optimal resilience and recovery strategies

    条件 最优弹性值 恢复策略
    Q=20 Q=24 Q=28 Q=32 Q=36 Q=20 Q=24 Q=28 Q=32 Q=36
    ${t_{\text{p}}} = 0.4 $,
    3种安检方式均可用
    0.8978 0.8970 0.8962 0.8955 0.8948 [0,6,14] [0,8,16] [0,10,18] [2,12,18] [4,14,18]
    $ {t_{\text{p}}} = 0.6 $,
    安检方式2、安检方式3可用
    0.8322 0.8306 0.8291 0.8277 0.8262 [0,6,14] [0,8,16] [0,10,18] [0,14,18] [0,16,20]
    ${t_{\text{p}}} = 0.8 $,
    安检方式3可用
    0.7905 0.7864 0.7824 0.7783 0.7743 [0,0,20] [0,0,24] [0,0,28] [0,0,32] [0,0,36]
    ${t_{\text{p}}} = 1.0 $,
    安检方式3可用
    0.7736 0.7685 0.7635 0.7584 0.7534 [0,0,20] [0,0,24] [0,0,28] [0,0,32] [0,0,36]
    下载: 导出CSV

    表  6  增大$ v_i $后的最优弹性值和恢复策略

    Table  6.   Optimal resilience and recovery strategy after increasing$ v_i $

    条件 最优弹性值 恢复策略
    原始值 v1提升5 v2提升5 v3提升5 $ v_i $均提升5 原始值 v1提升5 v2提升5 v3提升5 $ v_i $均提升5
    $ t_{\text{p}} $=0.4,
    3种安检方式均可用
    0.8948 0.8948 0.8949 0.8951 0.8592 [4,14,18] [4,14,18] [4,14,18] [4,12,20]
    $ t_{\text{p}} $=0.6,
    安检方式1不可用
    0.8262 0.8262 0.8266 0.8269 0.8271 [0,16,20] [0,16,20] [0,16,20] [0,14,22]
    $t_{\text{p}} $=0.8,
    安检方式1、安检方式2不可用
    0.7743 0.7743 0.7743 0.7767 0.7767 [0,0,36] [0,0,36] [0,0,36] [0,0,36] [0,0,36]
    下载: 导出CSV

    表  7  增大$ P_i $后的最优弹性值和恢复策略

    Table  7.   Optimal resilience and recovery strategy after increasing $ P_i $

    条件 最优弹性值 恢复策略
    原始值 P1提升0.1 P2提升0.1 P3提升0.1 P4提升0.1 原始值 P1提升0.1 P2提升0.1 P3提升0.1 P4提升0.1
    $ t_{\text{p}} $=0.4,
    3种安检方式均可用
    0.8948 0.8954 0.8961 0.8964 0.8979 [4,14,18] [8,10,18] [2,16,18] [2,12,22] [6,12,18]
    $ t_{\text{p}} $=0.6,
    安检方式2、安检方式3可用
    0.8262 0.8262 0.8288 0.8295 0.8318 [0,16,20] [0,16,20] [0,16,20] [0,14,22] [0,16,20]
    $ t_{\text{p}} $=0.8,
    安检方式3可用
    0.7743 0.7743 0.7800 [0,0,36] [0,0,36] [0,0,36]
    $ t_{\text{p}} $=0.8,
    安检方式2、安检方式3可用
    0.7900 0.7942 [0,16,20] [0,16,20]
    下载: 导出CSV
  • [1] International Civil Aviation Organization. Moving air cargo globally: air cargo and mail secure supply chain and facilitation guidelines[EB/OL]. (2011-06-24)[2023-07-26]. http://www.icao.int/Security/aircargo/Documents/Moving%20Air%20Cargo%20Globally%20-%20Third%20edition.EN.pdf.
    [2] DA CUNHA D A, MACÁRIO R, REIS V. Keeping cargo security costs down: a risk-based approach to air cargo airport security in small and medium airports[J]. Journal of Air Transport Management, 2017, 61: 115-122. doi: 10.1016/j.jairtraman.2017.01.003
    [3] 王赢. 国际航空货运安保模式对中国民航的启示[J]. 民航管理, 2020(8): 88-92.

    WANG Y. Enlightenment of international air cargo’s security check to Chinese civil aviation[J]. Civil Aviation Management, 2020(8): 88-92(in Chinese).
    [4] DOMINGUES S, MACÁRIO R, PAUWELS T, et al. An assessment of the regulation of air cargo security in Europe: a Belgian case study[J]. Journal of Air Transport Management, 2014, 34: 131-139. doi: 10.1016/j.jairtraman.2013.10.001
    [5] 赖国基, 罗嘉欣, 张怡, 等. 国际航空货运安保政策研究[J]. 综合运输, 2020, 42(9): 79-84.

    LAI G J, LUO J X, ZHANG Y, et al. On the security policy of international air cargo transportation[J]. China Transportation Review, 2020, 42(9): 79-84(in Chinese).
    [6] 陈锦渠, 张帆, 彭其渊, 等. 大客流下城市轨道交通站点韧性评估及划分[J]. 安全与环境学报, 2022, 22(6): 2994-3002.

    CHEN J Q, ZHANG F, PENG Q Y, et al. Resilience assessment and partition of an urban rail transit station under large passenger flow[J]. Journal of Safety and Environment, 2022, 22(6): 2994-3002(in Chinese).
    [7] 陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.

    CHEN L, DENG X Y, CHEN H K, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22(in Chinese).
    [8] 陈锦渠, 左彤, 朱蔓, 等. 城市轨道交通网络失效修复策略[J]. 安全与环境学报, 2022, 22(1): 316-323.

    CHEN J Q, ZUO T, ZHU M, et al. Repair strategies for a damaged urban rail transit network[J]. Journal of Safety and Environment, 2022, 22(1): 316-323(in Chinese).
    [9] 孔建国, 卢靖宇, 梁海军. 基于级联失效的管制扇区网络韧性评估[J]. 安全与环境学报, 2023, 23(11): 3978-3984.

    KONG J G, LU J Y, LIANG H J. Air traffic control sector network resilience evaluation based on cascading failures model[J]. Journal of Safety and Environment, 2023, 23(11): 3978-3984(in Chinese).
    [10] 颜克胜, 荣莉莉. 面向韧性提升的相互依赖关键基础设施网络灾后修复模型研究[J]. 运筹与管理, 2021, 30(5): 21-30.

    YAN K S, RONG L L. Post-disruption restoration model for enhancing resilience of interdependent critical infrastructure networks[J]. Operations Research and Management Science, 2021, 30(5): 21-30(in Chinese).
    [11] FANG C, CHU Y Z, FU H R, et al. On the resilience assessment of complementary transportation networks under natural hazards[J]. Transportation Research Part D: Transport and Environment, 2022, 109: 103331. doi: 10.1016/j.trd.2022.103331
    [12] WANG N X, YUEN K F. Resilience assessment of waterway transportation systems: combining system performance and recovery cost[J]. Reliability Engineering & System Safety, 2022, 226: 108673.
    [13] DUI H Y, ZHENG X Q, WU S M. Resilience analysis of maritime transportation systems based on importance measures[J]. Reliability Engineering & System Safety, 2021, 209: 107461.
    [14] 中国人民共和国交通运输部. 民用航空安全检查规则[J]. 中华人民共和国国务院公报, 2017(12): 77-87.

    Ministry of Transport of the People's Republic of China. Civil aviation safety inspection rules[J]. The Bulletin of the State Council of the People's Republic of China, 2017(12): 77-87(in Chinese).
    [15] 中国民用航空局. 民用运输机场安全保卫设施[EB/OL]. (2017-07-06)[2022-07-20]. http://www.caac.gov.cn/big5/www.caac.gov.cn/XXGK/XXGK/BZGF/HYBZ/202008/P020240712354418443635.pdf.

    Civil Aviation Administration of China. Civil transport airport security facilities[EB/OL]. (2017-07-06)[2022-07-20]. http://www.caac.gov.cn/big5/www.caac.gov.cn/XXGK/XXGK/BZGF/HYBZ/202008/P020240712354418443635.pdf(in Chinese).
    [16] EBELING C E. An introduction to reliability and maintainability engineering[M]. Long Grove: Waveland Press, 2019.
    [17] 杨纪珂. 寿命分布、失效率和可靠性[J]. 微电子学与计算机, 1974(3): 23-37.

    YANG J K. Life distribution, failure rate and reliability[J]. Microelectronics & Computer, 1974(3): 23-37(in Chinese).
    [18] BERDICA K. An introduction to road vulnerability: what has been done, is done and should be done[J]. Transport Policy, 2002, 9(2): 117-127. doi: 10.1016/S0967-070X(02)00011-2
    [19] NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering & System Safety, 2017, 157: 35-53.
    [20] BAROUD H, BARKER K, RAMIREZ-MARQUEZ J E, et al. Importance measures for inland waterway network resilience[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 62: 55-67. doi: 10.1016/j.tre.2013.11.010
    [21] ADAMS T M, BEKKEM K R, TOLEDO-DURÁN E J. Freight resilience measures[J]. Journal of Transportation Engineering, 2012, 138(11): 1403-1409. doi: 10.1061/(ASCE)TE.1943-5436.0000415
    [22] 中国民航科学技术研究院航空安保研究所. 2020年痕量爆炸物设备差异化研究[R]. 北京: 航科院安保所, 2020: 4-7.

    China Academy of Civil Aviation Science and Technology Institute of Aviation Security. 2020 trace explosives device differentiation study[R]. Beijing: Institute of Aviation Security, 2020: 4-7(in Chinese).
    [23] MCLAY L A, JACOBSON S H, KOBZA J E. A multilevel passenger screening problem for aviation security[J]. Naval Research Logistics, 2006, 53(3): 183-197. doi: 10.1002/nav.20131
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  85
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 录用日期:  2023-09-25
  • 网络出版日期:  2023-10-07
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答