留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双分支特征增强和多级轨迹关联的多目标跟踪算法

马素刚 段帅鹏 侯志强 余旺盛 蒲磊 杨小宝

马素刚,段帅鹏,侯志强,等. 基于双分支特征增强和多级轨迹关联的多目标跟踪算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2282-2289 doi: 10.13700/j.bh.1001-5965.2023.0472
引用本文: 马素刚,段帅鹏,侯志强,等. 基于双分支特征增强和多级轨迹关联的多目标跟踪算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2282-2289 doi: 10.13700/j.bh.1001-5965.2023.0472
MA S G,DUAN S P,HOU Z Q,et al. Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2282-2289 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0472
Citation: MA S G,DUAN S P,HOU Z Q,et al. Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2282-2289 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0472

基于双分支特征增强和多级轨迹关联的多目标跟踪算法

doi: 10.13700/j.bh.1001-5965.2023.0472
基金项目: 

国家自然科学基金(62072370);陕西省自然科学基金(2023-JC-YB-598);西安市科技计划项目(22GXFW0125)

详细信息
    通讯作者:

    E-mail:984187621@stu.xupt.edu.cn

  • 中图分类号: TP391

Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association

Funds: 

National Natural Science Foundation of China(62072370); Natural Science Foundation of Shaanxi Province(2023-JC-YB-598); Science and Technology Project of Xi’an City(22GXFW0125)

More Information
  • 摘要:

    在多目标跟踪(MOT)算法中,经常出现目标特征提取不足、身份切换及轨迹缺失问题,降低跟踪性能。为解决以上问题,提出一种基于双分支特征增强和多级轨迹关联(MTA)的MOT算法。采用双分支特征学习网络对检测和跟踪2种任务的特殊性和相关性进行学习,缓解了两任务之间的过度竞争,提取到充足的目标特征信息;引入关联矩阵(AM),利用更多的时序信息预测偏移向量,减少身份切换次数;采用多级轨迹关联策略,保留一部分低分检测框,并将检测框重新划分为高分框和低分框,采用不同的匹配方式与轨迹进行关联,减少轨迹缺失次数。在典型多目标跟踪数据集MOT17和MOT20上,对JDE、CenterTrack等6种相关算法进行对比实验。实验结果表明:所提算法在MOT17数据集上的多目标跟踪准确度(MOTA)和身份F1分数(IDF1)值分别达到68.2%和68.5%,与基准算法CenterTrack相比,分别提升了2.1%、4.3%;在MOT20数据集上,MOTA和IDF1值分别达到52.7%和48.2%,分别提升了1.4%、7.9%。所提算法在复杂场景下取得了优异的跟踪性能。

     

  • 图 1  本文算法总体框架

    Figure 1.  Overall framework of the proposed algorithm

    图 2  DFL网络结构

    Figure 2.  DFL networks structure

    图 3  MTA策略

    Figure 3.  MTA strategy

    图 4  远景下局部遮挡的对比结果

    Figure 4.  Comparison results of localized occlusion in distant view

    图 5  近景下严重遮挡的对比结果

    Figure 5.  Comparison results of severe occlusion in close-up view

    图 6  MTA处理轨迹缺失场景

    Figure 6.  MTA processing trajectory missing scenarios

    表  1  本文算法在MOT17测试集上的消融实验

    Table  1.   Ablation experiments of the proposed algorithm on MOT17 test set

    基准算法 AM DFL MTA MOTA/% IDF1/% IDs/次 MT/% ML/%
    CenterTrack 66.1 64.2 528 41.3 21.2
    67.1 68.6 369 41.0 19.2
    67.4 69.1 368 40.4 18.6
    67.9 67.8 344 44.2 18.3
    68.2 68.5 333 44.5 16.8
    下载: 导出CSV

    表  2  不同跟踪算法实验对比

    Table  2.   Experimental comparison of different tracking algorithms

    数据集 算法 MOTA/% IDF1/% IDs/次 FP FN speed/(帧·s−1)
    MOT17 CTracker[14] 63.1 60.9 755 2955 16174 6.8
    JDE[8] 60.0 63.6 473 2923 18158 22.2
    CenterTrack[9] 66.1 64.2 528 2442 15286 17.5
    QuasiDense[15] 67.3 67.8 377 2637 14605 20.3
    TransTrack[16] 67.1 68.3 254 1652 15817 10.0
    MOTR[17] 64.7 67.2 346 5278 13452 7.5
    本文算法 68.2 68.5 333 2062 14764 16.8
    MOT20 CenterTrack[9] 51.3 40.3 7731 10080 281757 10.2
    本文算法 52.7 48.2 3043 13403 274419 7.8
    下载: 导出CSV
  • [1] 朱姝姝, 王欢, 严慧. 基于帧内关系建模和自注意力融合的多目标跟踪方法[J]. 控制与决策, 2023, 38(2): 335-344.

    ZHU S S, WANG H, YAN H. Multi-object tracking based on intra-frame relationship modeling and self-attention fusion mechanism[J]. Control and Decision, 2023, 38(2): 335-344(in Chinese).
    [2] CAO M W, ZHENG L P, JIA W, et al. Joint 3D reconstruction and object tracking for traffic video analysis under IoV environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3577-3591. doi: 10.1109/TITS.2020.2995768
    [3] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2443-2451.
    [4] PEREIRA R, CARVALHO G, GARROTE L, et al. Sort and deep-SORT based multi-object tracking for mobile robotics: evaluation with new data association metrics[J]. Applied Sciences, 2022, 12(3): 1319. doi: 10.3390/app12031319
    [5] 吴孙勇, 周于松, 谢芸, 等. 基于MM-GGIW-PMBM滤波的扩展目标跟踪算法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(12): 2356-2364.

    WU S Y, ZHOU Y S, XIE Y, et al. Extended target tracking algorithm based on MM-GGIW-PMBM filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2356-2364(in Chinese).
    [6] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2016: 3464-3468.
    [7] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2017: 3645-3649.
    [8] WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin: Springer, 2020: 107-122.
    [9] ZHOU X Y, KOLTUN V, KRÄHENBÜHL P. Tracking objects as points[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin: Springer, 2020: 474-490.
    [10] LIANG C, ZHANG Z P, ZHOU X, et al. Rethinking the competition between detection and ReID in multiobject tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196. doi: 10.1109/TIP.2022.3165376
    [11] ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points [EB/OL]. (2019-04-16)[2023-07-01]. http://arxiv.org/abs/1904.07850.
    [12] WU J L, CAO J L, SONG L C, et al. Track to detect and segment: an online multi-object tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 12347-12356.
    [13] STIEFELHAGEN R, BERNARDIN K, BOWERS R, et al. The CLEAR 2006 evaluation[C]//Proceedings of the International Evaluation Workshop on Classification of Events, Activities and Relationships. Berlin: Springer, 2006: 1-44.
    [14] PENG J L, WANG C G, WAN F B, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin: Springer, 2020: 145-161.
    [15] PANG J M, QIU L L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 164-173.
    [16] SUN P Z, CAO J K, JIANG Y, et al. Transtrack: multiple object tracking with transformer [EB/OL]. (2020-12-31)[2023-07-01]. http://arxiv.org/abs/2012.15460.
    [17] ZENG F G, DONG B, ZHANG Y A, et al. MOTR: end-to-end multiple-object tracking with transformer[C]//Proceedings of the 17th European Conference on Computer Vision. Berlin: Springer, 2022: 659-675.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  91
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 录用日期:  2023-10-25
  • 网络出版日期:  2023-10-30
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答