留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民机货舱氮气-细水雾协同灭火数值仿真研究

黄苏平 朱培 刘全义 邵荃

黄苏平,朱培,刘全义,等. 民机货舱氮气-细水雾协同灭火数值仿真研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3161-3173 doi: 10.13700/j.bh.1001-5965.2023.0469
引用本文: 黄苏平,朱培,刘全义,等. 民机货舱氮气-细水雾协同灭火数值仿真研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3161-3173 doi: 10.13700/j.bh.1001-5965.2023.0469
HUANG S P,ZHU P,LIU Q Y,et al. Numerical simulation study on synergetic fire suppression of nitrogen/water-mist in aircraft cargo compartment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3161-3173 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0469
Citation: HUANG S P,ZHU P,LIU Q Y,et al. Numerical simulation study on synergetic fire suppression of nitrogen/water-mist in aircraft cargo compartment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3161-3173 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0469

民机货舱氮气-细水雾协同灭火数值仿真研究

doi: 10.13700/j.bh.1001-5965.2023.0469
基金项目: 

国家自然科学基金(52202416); 中国民航大学民航热灾害防控与应急重点实验室开放基金(RZH2021-KF-02)

详细信息
    通讯作者:

    E-mail:zpei@nuaa.edu.cn

  • 中图分类号: V244.1+2

Numerical simulation study on synergetic fire suppression of nitrogen/water-mist in aircraft cargo compartment

Funds: 

National Natural Science Foundation of China (52202416); Opening Fund of Key Laboratory of Civil Aviation Thermal Disaster Prevention and Emergency, Civil Aviation University of China (RZH2021-KF-02)

More Information
  • 摘要:

    货舱火灾是民机运输安全的重要威胁之一。考虑不同火源位置和环境压力的影响,基于火灾动力学模拟(FDS)代码开展了全尺度飞机货舱氮气-细水雾协同熄灭航空煤油池火有效性评估研究。结果表明:货舱火源位置影响灭火效果,角落火最难扑灭;以角落火为例,氮气灭火初期对火源难以有效抑制,而细水雾启动后可快速衰减火源热释放率;在氮气和细水雾单喷头流量分别为0.222 kg/s和15 L/min时,与单独氮气和细水雾灭火相比,协同灭火时冷却降温和窒息效应均显著增强,灭火效率分别提高46.20%和48.80%,其中氮气的加入可使水消耗量减少48.78%;当灭火参数相同时,灭火剂释放速率增加可同时降低灭火时间和灭火剂消耗量,实际中应采用大流量快速释放的喷头结构设计;环境压力降低可显著降低灭火时间,环境压力从101 kPa 降低至46 kPa,协同灭火降温速率可提高约48.60%。

     

  • 图 1  货舱物理模型和测量系统布局示意

    Figure 1.  Physical model of the cargo compartment and schematic layout of the measurement system

    图 2  不同单元网格尺寸热电偶T19温度变化结果

    Figure 2.  The variation results of temperature for thermocouple T19 with different cell mesh size

    图 3  氮气熄灭不同位置火时HRR变化结果

    Figure 3.  Results of HRR for the fire at different positions suppressed by N2

    图 4  半雾锥角示意

    Figure 4.  Half spray cone angle diagram

    图 5  不同雾特性参数下灭火时间变化结果

    Figure 5.  The variation of fire extinguishing time with water mist parameters

    图 6  细水雾熄灭不同位置火时HRR变化结果

    Figure 6.  Results of HRR for the fire at different positions suppressed by water mist

    图 7  不同灭火模式下HRR变化结果

    Figure 7.  The variation of HRR under different fire extinguishing modes

    图 8  火焰上方热电偶温度变化结果

    Figure 8.  The variation of temperature above the flame

    图 9  灭火启动15 s时油盘中心截面(x=7.8 m)温度分布结果

    Figure 9.  Temperature distribution of the central section of the oil pan (x=7.8 m) for 15 s after the activation of extinguishing agent

    图 10  灭火启动15 s时顶棚温度分布结果

    Figure 10.  Temperature distribution of the ceiling for 15 s after the activation of extinguishing agent

    图 11  测点O1~O3氧体积分数变化结果

    Figure 11.  Results of oxygen volume fraction change in the measurement point O1~O3

    图 12  灭火剂启动15 s时油盘中心截面(x=7.8 m)氧体积分数分布结果

    Figure 12.  Oxygen concentration distribution of the central section of the oil pan (x=7.8 m) for 15 s after the activation of extinguishing agent

    图 13  灭火剂扩散参数随环境压力变化结果

    Figure 13.  Results of diffusion parameters of extinguishing agent varying with ambient pressure

    图 14  不同环境压力与灭火模式下HRR变化结果

    Figure 14.  HRR variation results of fire source under different ambient pressure and fire extinguishing mode

    图 15  不同环境压力与灭火模式下热电偶T19温度变化结果

    Figure 15.  Temperature changes of thermocouple T19 under different ambient pressures and fire extinguishing mode

    图 16  灭火启动5 s时油盘中心截面(x=7.8 m)温度分布结果

    Figure 16.  Temperature distribution results of the central section of oil pan (x=7.8 m) for 5 s after the activation of extinguishing

    图 17  不同环境压力下协同灭火时顶棚温度变化结果

    Figure 17.  Results of ceiling temperature variation under different ambient pressure

    图 18  不同环境压力和灭火模式下测点 O1氧体积分数变化结果

    Figure 18.  Results of O1 oxygen volume fraction under different ambient pressure and extinguishing mode

    图 19  不同环境压力下协同灭火时油盘中心截面(x=7.8 m)氧体积分数变化结果

    Figure 19.  Results of oxygen concentration in the central section of the oil pan (x=7.8 m) under different ambient pressure

    表  1  不同灭火剂流量下灭火对比结果

    Table  1.   Comparative results of fire extinguishing under different flow rates of extinguishing agents

    工况
    序号
    灭火剂 灭火时间/s 消耗量/kg
    氮气 细水雾
    1氮气(0.222 kg/s)3926.010
    细水雾(15 L/min)41030.75
    协同(氮气: 0.222 kg/s,水:15 L/min)2114.0115.75
    2氮气(0.10 kg/s)6519.500
    细水雾(10 L/min)70035.00
    协同(氮气: 0.10 kg/s,水:10 L/min)5416.2027.00
    下载: 导出CSV

    表  2  不同环境压力与灭火模式下灭火时间结果

    Table  2.   Fire extinguishing time data results under different ambient pressure and fire extinguishing mode

    灭火剂 灭火时间/s
    46 kPa 76 kPa 101 kPa
    氮气 18 33 39
    细水雾 10 17 41
    协同 5 9 21
    下载: 导出CSV

    表  3  不同环境压力下协同灭火时降温速率数据

    Table  3.   Data of synergetic cooling rate under different ambient pressures

    环境压力/ kPa 最高温度/℃ 达到常温时间/s 降温速率/(℃·s−1)
    46 638 23 26.0
    76 769 43 18.0
    101 900 49 17.5
    下载: 导出CSV
  • [1] CRAIG P L. “Environmental Control Systems” in the encyclopedia of aerospace engineering[M]. Hoboken: John Wiley & Sons, Ltd, 2010.
    [2] PROTOCOL M, DEPLETE O. Halons technical options committee assessment report[R]. Geneva: UN Environment, 2018.
    [3] 贺元骅, 张政, 伍毅. 低压环境下航空电缆材料燃烧特性的研究[J]. 塑料科技, 2020, 48(1): 71-74.

    HE Y H, ZHANG Z, WU Y. Experimental study on combustion characteristics of aviation cable materials under low pressure environment[J]. Plastics Science and Technology, 2020, 48(1): 71-74(in Chinese).
    [4] WANG W, WANG L, YANG R, et al. Investigation of the effect of low pressure on fire hazard in cargo compartment[J]. Applied Thermal Engineering, 2019, 158: 113775. doi: 10.1016/j.applthermaleng.2019.113775
    [5] 刘全义, 朱博, 邓力, 等. 低压环境下不同直径油池火特征参量研究[J]. 中国安全科学学报, 2021, 31(4): 105-110.

    LIU Q Y, ZHU B, DENG L, et al. Study on characteristic parameters of oil pool fire of different diameters in low pressure environment[J]. China Safety Science Journal, 2021, 31(4): 105-110(in Chinese).
    [6] DINESH A, BENSON C M, HOLBORN P G, et al. Performance evaluation of nitrogen for fire safety application in aircraft[J]. Process Safety and Environmental Protection, 2020, 141: 110-122. doi: 10.1016/j.psep.2020.04.022
    [7] HU X Q, KRAAIJEVELD A, LOG T. Numerical investigation of the required quantity of inert gas agents in fire suppression systems[J]. Energies, 2020, 13: 2536. doi: 10.3390/en13102536
    [8] LEE J, MOON J. Numerical analysis of the effect of horizontal distance between a water mist nozzle and ignition source on reduction in heat release rate[J]. Annals of Nuclear Energy, 2020, 144: 107560. doi: 10.1016/j.anucene.2020.107560
    [9] WANG Z, Wang W H, WANG Q S. Optimization of water mist droplet size by using CFD modeling for fire suppressions[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 626-632. doi: 10.1016/j.jlp.2016.04.010
    [10] ZHANG T W, LIU H, SONG J W, et al. Synergistic inhibition effect on lithium-ion batteries during thermal runaway by N2-twin-fluid liquid mist[J]. Case Studies in Thermal Engineering, 2022, 37: 102269. doi: 10.1016/j.csite.2022.102269
    [11] ZHANG B, ZHU Q, XU Y, et al. The effect of ambient pressure on gas jet diffusion in air: experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2019, 134: 392-403.
    [12] WANG X S, ZHU P, LI Y, et al. Effect of low ambient air pressure on spray characteristics of water mist[J]. Experimental Thermal and Fluid Science, 2015, 66: 7-12. doi: 10.1016/j.expthermflusci.2015.03.009
    [13] ZHU P, WANG X S. Numerical study on the effects of ambient air pressure on water mist characteristics[J]. Energy Procedia, 2015, 66: 169-172. doi: 10.1016/j.egypro.2015.02.005
    [14] 戴经天. 低压环境细水雾灭火有效性实验研究[D]. 广汉: 中国民用航空飞行学院, 2019: 13-48.

    DAI J T. Experimental study on fire extinguishing effectiveness of water mist in low pressure environment[D]. Guanghan: Civil Aviation Flight College of China, 2019: 13-48(in Chinese).
    [15] MA Q J, WAN M S, SHAO J C, et al. Pool fire suppression performance by twin-fluid water mist under low pressures in an altitude chamber[J]. Process Safety Progress, 2021, 40(1): e12155. doi: 10.1002/prs.12155
    [16] REINHARDT J. Minimum performance standard for aircraft cargo compartment halon replacement fire suppression systems (2012 update[R]. Washington, D.C.: Federal Aviation Administration, 2012.
    [17] XIONG Y F, DIAKOSTEFANIS M, DINESH A, et al. Numerical assessment for aircraft cargo compartment fire suppression system safety[J]. Journal of Fire Sciences, 2021, 39(3): 240-261. doi: 10.1177/07349041211003208
    [18] MARKER T R, REINHARDT J. Water spray as a fire suppression agent for aircraft cargo compartment Fires: DOT/FAA/AR-TN01/1[R]. Virginia: National Technical Information Service, 2001.
    [19] REINHARDT J. The evaluation of water mist with and without nitrogen as an aircraft cargo compartment fire suppression system: DOT/FAA/AR-01/121[R]. Virginia: National Technical Information Service, 2002.
    [20] 吕志豪. 民机货舱细水雾雾场特性及抑灭火有效性研究[D]. 广汉: 中国民用航空飞行学院, 2020: 37-79.

    LV Z H. Study on characteristics of water mist field and effectiveness of fire suppression in Civil aircraft cargo Hold[D]. Guanghan: Civil Aviation Flight College of China, 2020: 37-79(in Chinese).
    [21] 朱培, 罗圣峰, 刘全义, 等. 货舱低压环境下细水雾抑灭航空煤油池火有效性[J]. 清华大学学报(自然科学版), 2022, 62(1): 21-32.

    ZHU P, LUO S F, LIU Q Y, et al. Effectiveness of aviation kerosene pool fire suppression by water mist in a cargo compartment with low-pressure environment[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(1): 21-32(in Chinese).
    [22] KEVIN M G, SIMO H, RANDALL M D, et al. Fire dynamics simulator user’s guide[M]. Gaithersburg: National Institute of Standards and Technology, 2019.
    [23] KEVIN M G, SIMO H, RANDALL M D, et al. Fire dynamics simulator technical reference guide volume 1: mathematical mode[M]. Gaithersburg: National Institute of Standards and Technology, 2019.
    [24] Klein RA. SFPE handbook of fire protection engineering[M]. 5th ed. New York; Springer, 2015.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  68
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-10-23
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答