留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于STF-Net的信号调制波形识别方法

哈晖 高翔 姚秀娟 付降寅 李伟 张晓燕

哈晖,高翔,姚秀娟,等. 基于STF-Net的信号调制波形识别方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3150-3160 doi: 10.13700/j.bh.1001-5965.2023.0467
引用本文: 哈晖,高翔,姚秀娟,等. 基于STF-Net的信号调制波形识别方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3150-3160 doi: 10.13700/j.bh.1001-5965.2023.0467
HA H,GAO X,YAO X J,et al. Signal modulation waveform recognition method based on STF-Net[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3150-3160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0467
Citation: HA H,GAO X,YAO X J,et al. Signal modulation waveform recognition method based on STF-Net[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3150-3160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0467

基于STF-Net的信号调制波形识别方法

doi: 10.13700/j.bh.1001-5965.2023.0467
基金项目: 

国家重点研发计划(2020YFB1807900); 北京市自然科学基金(L222003)

详细信息
    通讯作者:

    E-mail:gaoxiang@nssc.ac.cn

  • 中图分类号: V47;TN927+.21

Signal modulation waveform recognition method based on STF-Net

Funds: 

National Key Research and Development Program of China (2020YFB1807900); Beijing Municipal Natural Science Foundation (L222003)

More Information
  • 摘要:

    信号调制波形识别是空间频谱认知领域的关键技术之一,是实现低轨卫星频谱资源监测与管控的重要手段。针对现阶段基于深度学习的调制波形识别方法存在的参数量多、计算复杂度高等问题,提出一种基于空时融合网络(STF-Net)的轻量级信号调制波形识别方法。将信号预处理为时域-频域形式的双通道数据,通过卷积神经网络(CNN)提取信号空间特征并减少特征冗余,进而利用长短时记忆网络(LSTM)提取时序信息,输出识别结果。实验结果表明:所提方法在信噪比大于0 dB时,调制波形的平均识别准确率达到91.79%;与同等方法相比,所提方法参数量降低了96%,效率提升了2.7倍。

     

  • 图 1  二维卷积示意图

    Figure 1.  Illustration of 2D convolution

    图 2  池化操作示意图

    Figure 2.  Illustration of pooling operation

    图 3  LSTM基本结构

    Figure 3.  Basic structure of LSTM

    图 4  STF-Net网络结构

    Figure 4.  STF-Net network architecture

    图 5  卷积模块结构

    Figure 5.  Convolutional module structure

    图 6  特征降维结构

    Figure 6.  Feature reduction architecture

    图 7  不同卷积核数目识别准确率比较

    Figure 7.  Comparison of recognition accuracy with different numbers of convolutional kernels

    图 8  数据表示形式识别准确率比较

    Figure 8.  Comparison of data format recognition accuracy

    图 9  不同方法识别准确率比较

    Figure 9.  Comparison of recognition accuracy among different methods

    图 10  不同信噪比下的混淆矩阵

    Figure 10.  Confusion matrix at different signal-to-noise ratios

    表  1  STF-Net网络层数据结构

    Table  1.   Data structures of STF-Net network layers

    网络层 输入数据结构 输出数据结构
    卷积模块1 (1,2,128) (N1,1,130)
    卷积模块2 (N1,1,130) (N2,1,130)
    特征降维1 (N1,1,130) (6,1,130)
    特征降维2 (N2,1,130) (14,1,130)
    连接层 (6,1,130), (14,1,130) (20,130)
    LSTM模块1 (20,130) (50,130)
    LSTM模块2 (50,130) (20,130)
    全连接层 20 11
    下载: 导出CSV

    表  2  数据集参数

    Table  2.   Dataset parameters

    采样
    频率/kHz
    采样频率
    标准差/Hz
    最大采样
    频率偏移量/Hz
    载波频率
    偏移标准差/Hz
    最大载波
    频率偏移/Hz
    频率选择性
    衰落中使用的
    正弦波个数
    衰落中使用
    的最大多
    普勒频率/Hz
    衰落
    模型
    莱斯
    因子
    功率时延
    谱的部分
    样本延迟
    每个延迟
    时间对应
    的大小
    插入功率
    时延谱的
    滤波器长度
    200 0.01 50 0.01 500 8 1 Rician 4 [0, 0.9, 1.7] [1, 0.8, 1.3] 8
    下载: 导出CSV

    表  3  不同卷积核数的平均识别准确率

    Table  3.   Average recognition accuracy for different numbers of convolutional kernels

    卷积核数目N 平均识别准确率/%
    [−20,0) dB [0,18] dB [−20,18] dB
    10 30.99 88.03 59.51
    20 30.35 89.36 59.85
    30 30.80 89.45 60.12
    40 31.19 90.78 60.98
    50 31.31 90.51 60.91
    60 30.07 89.96 60.52
    70 31.30 90.62 60.96
    80 32.08 91.04 61.56
    90 31.90 90.43 61.16
    100 31.02 90.35 60.68
    下载: 导出CSV

    表  4  不同数目卷积核的平均识别准确率

    Table  4.   Average recognition accuracy with different numbers of convolutional kernels

    卷积核数目(N1,N2) 平均识别准确率/%
    [−20,0) dB [0,18] dB [−20,18] dB
    (80,80) 32.08 91.04 61.56
    (81,79) 32.30 91.35 61.83
    (82,78) 32.41 91.16 61.79
    (83,77) 32.65 91.35 61.95
    下载: 导出CSV

    表  5  不同表示形式数据的平均识别准确率

    Table  5.   Average recognition accuracy of different data representations

    输入数据形式 平均识别准确率/%
    [−20,0) dB [0,18] dB [−20,18] dB
    IQ_data 32.65 91.35 61.95
    AP_data 32.46 90.89 61.68
    FD_data 25.33 69.32 47.33
    IQ-AP_data 32.57 90.79 61.68
    IQ-FD_data 32.33 91.79 62.06
    AP-FD_data 32.70 91.26 61.98
    IQ-AP-FD_data 32.32 91.27 61.80
    下载: 导出CSV

    表  6  不同方法的网络结构

    Table  6.   Network structures of different methods

    算法CNN层数卷积
    核尺寸
    通道数LSTM层数隐藏
    单元数
    文献[22]3(1,8),(1,8),(1,8)50,50,50150
    文献[23]2(1,3),(2,3)128,321128
    文献[24]3(1,3),(2,3)(1,3)256,256,802100,50
    文献[25]3(1,5),(1,7)(1,9)8,16,322256,256
    文献[26]3(2,8),(1,8),(2,5)50,50,1002128,128
    本文算法2(2,3),(1,3)83,77250,20
    下载: 导出CSV

    表  7  不同方法的平均识别准确率

    Table  7.   Average recognition accuracy of different methods

    算法 平均识别准确率/%
    [0,18] dB [−20,18] dB
    文献[22] 82.88 56.46
    文献[23] 86.70 59.96
    文献[24] 91.50 61.98
    文献[25] 87.09 59.20
    文献[26] 91.58 61.68
    本文算法 91.79 62.06
    下载: 导出CSV

    表  8  不同方法的模型参数量及训练时间

    Table  8.   Model parameters and training time of different methods

    方法 网络参数/个 训练时间/s
    文献[22] 71 311 209.70
    文献[23] 108 971 43.36
    文献[24] 1 187 943 126.11
    文献[25] 903 664 64.71
    文献[26] 604 505 48.45
    本文方法 42 165 45.71
    下载: 导出CSV
  • [1] 李高, 王威, 吴启晖. 面向低轨卫星的频谱认知智能管控[J]. 中兴通讯技术, 2021, 27(5): 7-11. doi: 10.12142/ZTETJ.202105003

    LI G, WANG W, WU Q H. Cognitive intelligent spectrum management and control for low earth orbit satellite system[J]. ZTE Technology Journal, 2021, 27(5): 7-11(in Chinese). doi: 10.12142/ZTETJ.202105003
    [2] 古相平. 浅谈通信信号调制样式自动识别方法[J]. 无线互联科技, 2011, 8(2): 22-23. doi: 10.3969/j.issn.1672-6944.2011.02.007

    GU X P. Discussion on automatic identification method of communication signal modulation pattern[J]. Wireless Internet Technology, 2011, 8(2): 22-23(in Chinese). doi: 10.3969/j.issn.1672-6944.2011.02.007
    [3] 张海燕, 闫文君, 张立民, 等. 通信信号调制识别综述[J]. 海军航空大学学报, 2022, 37(1): 126-132.

    ZHANG H Y, YAN W J, ZHANG L M, et al. An overview of communication signal modulation recognition[J]. Journal of Naval Aviation University, 2022, 37(1): 126-132(in Chinese).
    [4] 林冲, 闫文君, 张立民, 等. 通信信号调制识别综述[J]. 中国电子科学研究院学报, 2021, 16(11): 1074-1085. doi: 10.3969/j.issn.1673-5692.2021.11.002

    LIN C, YAN W J, ZHANG L M, et al. An overview of communication signals modulation recognition[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(11): 1074-1085(in Chinese). doi: 10.3969/j.issn.1673-5692.2021.11.002
    [5] HASSAN K, DAYOUB I, HAMOUDA W, et al. Automatic modulation recognition using wavelet transform and neural network[C]// Proceedings of the 9th International Conference on Intelligent Transport Systems Telecommunications. Piscataway: IEEE Press, 2009: 234-238.
    [6] 闫文康, 闫毅, 范亚楠, 等. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968

    YAN W K, YAN Y, FAN Y N, et al. A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation[J]. Chinese Journal of Space Science, 2021, 41(6): 968-975(in Chinese). doi: 10.11728/cjss2021.06.968
    [7] 李世平, 陈方超, 王隆, 等. 多径信道下基于循环谱特征的调制识别算法[J]. 计算机应用, 2012, 32(8): 2123-2127.

    LI S P, CHEN F C, WANG L, et al. Modulation identification algorithm based on cyclic spectrum characteristics in multipath channel[J]. Journal of Computer Applications, 2012, 32(8): 2123-2127(in Chinese).
    [8] DONG S L, LI Z P, ZHAO L F. A modulation recognition algorithm based on cyclic spectrum and SVM classification[C]// Proceeding of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 2123-2127.
    [9] FLOHBERGER M, GAPPMAIR W, KOUDELKA O. Modulation classifier for signals used in satellite communications[C]// Proceeding of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2010: 198-202.
    [10] 李跃, 郭兴吉, 赵欣. 基于高阶累积量的调制方式识别研究[J]. 西南科技大学学报, 2018, 33(3): 64-68. doi: 10.3969/j.issn.1671-8755.2018.03.013

    LI Y, GUO X J, ZHAO X. Study on modulation recognition based on higher-order cumulants[J]. Journal of Southwest University of Science and Technology, 2018, 33(3): 64-68(in Chinese). doi: 10.3969/j.issn.1671-8755.2018.03.013
    [11] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [12] TOKOZUME Y, HARADA T. Learning environmental sounds with end-to-end convolutional neural network[C]// Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2017: 2721-2725.
    [13] GAN C Q, WANG L, ZHANG Z F, et al. Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis[J]. Knowledge-Based Systems, 2020, 188: 104827. doi: 10.1016/j.knosys.2019.06.035
    [14] WANG D S, ZHANG M, LI Z, et al. Modulation format recognition and OSNR estimation using CNN-based deep learning[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1667-1670. doi: 10.1109/LPT.2017.2742553
    [15] PENG S L, JIANG H Y, WANG H X, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727. doi: 10.1109/TNNLS.2018.2850703
    [16] DOAN V S, HUYNH-THE T, HUA C H, et al. Learning constellation map with deep CNN for accurate modulation recognition[C]// Proceeding of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2020: 1-6.
    [17] TENG C F, LIAO C C, CHEN C H, et al. Polar feature based deep architectures for automatic modulation classification considering channel fading[C]// Proceeding of the IEEE Global Conference on Signal and Information Processing. Piscataway: IEEE Press, 2018: 554-558.
    [18] TENG C F, CHOU C Y, CHEN C H, et al. Accumulated polar feature-based deep learning for efficient and lightweight automatic modulation classification with channel compensation mechanism[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15472-15485. doi: 10.1109/TVT.2020.3041843
    [19] KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]// Proceeding of the IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-3.
    [20] O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// Proceeding of the Engineering Applications of Neural Networks. Berlin: Springer, 2016: 213-226.
    [21] YASHASHWI K, SETHI A, CHAPORKAR P. A learnable distortion correction module for modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(1): 77-80. doi: 10.1109/LWC.2018.2855749
    [22] WEST N E, O’SHEA T. Deep architectures for modulation recognition[C]// Proceeding of the IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-6.
    [23] WU Y L, LI X J, FANG J. A deep learning approach for modulation recognition via exploiting temporal correlations[C]// Proceeding of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE Press, 2018: 1-5.
    [24] ZHANG Z F, LUO H, WANG C, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521-13531. doi: 10.1109/TVT.2020.3030018
    [25] REN Y, JIANG W, LIU Y. Complex-valued parallel convolutional recurrent neural networks for automatic modulation classification [C]// Proceeding of the IEEE 25th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE Press, 2022: 804-809.
    [26] ZHANG F X, LUO C B, XU J L, et al. An autoencoder-based I/Q channel interaction enhancement method for automatic modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9620-9625. doi: 10.1109/TVT.2023.3248625
    [27] XU J L, LUO C B, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629-1632. doi: 10.1109/LWC.2020.2999453
    [28] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  74
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-13
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答