留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性支承特性对惯性参考单元性能影响的分析

李醒飞 韩佳欣 拓卫晓 刘雅琪 王天宇

李醒飞,韩佳欣,拓卫晓,等. 柔性支承特性对惯性参考单元性能影响的分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2850-2859 doi: 10.13700/j.bh.1001-5965.2023.0461
引用本文: 李醒飞,韩佳欣,拓卫晓,等. 柔性支承特性对惯性参考单元性能影响的分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2850-2859 doi: 10.13700/j.bh.1001-5965.2023.0461
LI X F,HAN J X,TUO W X,et al. Influence analysis of flexure support characteristics on performance of inertial reference unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2850-2859 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0461
Citation: LI X F,HAN J X,TUO W X,et al. Influence analysis of flexure support characteristics on performance of inertial reference unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2850-2859 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0461

柔性支承特性对惯性参考单元性能影响的分析

doi: 10.13700/j.bh.1001-5965.2023.0461
基金项目: 

国家自然科学基金(62203322);中国博士后科学基金(2022M712372);深海技术科学太湖实验室“揭榜挂帅”项目(2022JBGS03001)

详细信息
    通讯作者:

    E-mail:tuoweixiao@tju.edu.cn

  • 中图分类号: V19

Influence analysis of flexure support characteristics on performance of inertial reference unit

Funds: 

National Natural Science Foundation of China (62203322);China Postdoctoral Science Foundation (2022M712372);Enlisting and Leading Program of the Taihu Laboratory of Deepsea Technological Science (2022JBGS03001)

More Information
  • 摘要:

    复合轴跟瞄与惯性参考单元(IRU)相结合的方式是当前抑制运动平台振动干扰、提升跟瞄精度的主要技术手段。IRU通常采用柔性支承结构,以规避框架式结构转动惯量大的缺陷,柔性支承特性是决定IRU扰动抑制带宽的关键因素。基于此,针对柔性支承特性对IRU性能的影响进行量化分析,基于质量-刚度-阻尼模型建立IRU系统的传递函数模型,并验证其准确性;利用参数分析方法研究柔性支承扰动传递特性和物理参数对IRU系统扰动抑制能力的影响;搭建IRU“速度内环-位置外环”双闭环控制系统的Simulink仿真模型,通过仿真分析给定振动环境下柔性支承转动刚度特性对IRU扰动抑制能力和稳定精度的影响。结果表明:柔性支承的扰动传递特性决定了系统对高频扰动的抑制能力,降低柔性支承的转动刚度能够有效提升IRU系统的扰动抑制能力,但会加剧传感器静态测量噪声、驱动器纹波对IRU系统稳定精度的负面影响。

     

  • 图 1  IRU工作原理框图

    Figure 1.  Block diagram of IRU working principle

    图 2  质量-刚度-阻尼模型

    Figure 2.  Mass-stiffness-damping model

    图 3  IRU系统开环幅频响应曲线

    Figure 3.  Open-loop frequency response curve of IRU system

    图 4  IRU系统扰动抑制特性

    Figure 4.  Disturbance rejection characteristics of IRU system

    图 5  辨识实验系统框图

    Figure 5.  Block diagram of identification experiment system

    图 6  理论建模与实验辨识结果对比

    Figure 6.  Comparison of theoretical modeling and experimental identification results

    图 7  转动惯量对IRU系统的影响

    Figure 7.  Influence of moment of inertia on IRU system

    图 8  转动刚度对IRU系统的影响

    Figure 8.  Influence of rotational stiffness on IRU system

    图 9  IRU系统控制结构示意图

    Figure 9.  Control structure diagram of IRU system

    图 10  IRU系统仿真模型

    Figure 10.  Simulation model of IRU system

    图 11  控制回路对IRU系统的影响

    Figure 11.  Influence of control loop on IRU system

    图 12  不同转动刚度下IRU系统的扰动抑制能力

    Figure 12.  Disturbance rejection ability of IRU system under different rotational stiffness

    图 13  传感器静态测量噪声

    Figure 13.  Static measurement noise of sensor

    图 14  角速度噪声功率谱密度

    Figure 14.  Noise power spectral density of angular velocity

    图 15  不同转动刚度下传感器静态测量噪声对输出转角的影响

    Figure 15.  Influence of sensor static measurement noise on output angle under different rotational stiffness

    图 16  驱动器纹波

    Figure 16.  Driver ripple

    图 17  不同转动刚度下驱动器纹波对输出转角的影响

    Figure 17.  Influence of driver ripple on output angle under different rotational stiffness

    表  1  不同转动刚度时IRU系统扰动抑制能力的影响

    Table  1.   Influence of different rotational stiffness on disturbance rejection ability of IRU system

    转动刚度/
    (N·m·rad−1)
    谐振频率/Hz 扰动频率/Hz 扰动抑制比/dB
    69.0317.471−46.25
    17.47−10.18
    100−22.45
    269.0334.521−34.5
    34.52−4.49
    100−11.34
    469.0345.781−29.76
    45.7814.314
    100−5.93
    下载: 导出CSV

    表  2  不同转动刚度下传感器静态测量噪声对稳定精度的影响

    Table  2.   Influence of sensor static measurement noise on stabilization precision under different rotational stiffness

    转动刚度/( N·m·rad−1) 输出转角均方根/μrad 等效角位移/μrad
    69.03 15.975 15.975
    269.03 7.442 7.4371
    469.03 5.5367 5.5306
    下载: 导出CSV

    表  3  不同转动刚度下驱动器纹波对稳定精度的影响

    Table  3.   Influence of driver ripple on stabilization precision under different rotational stiffness

    转动刚度/( N·m·rad−1) 输出转角均方根/μrad 等效角位移/μrad
    69.03 3.2992 3.2993
    269.03 1.4495 1.4495
    469.03 0.8466 0.8467
    下载: 导出CSV
  • [1] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光学工程, 1989, 16(3): 1-42.

    MA J G. The basic technologies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989, 16(3): 1-42(in Chinese).
    [2] LI Q, LIU L, YANG H J. High accuracy and multi-target acquisition, pointing and tracking under satellite micro-vibrations[J]. Microgravity Science and Technology, 2020, 32(4): 715-727. doi: 10.1007/s12217-020-09804-0
    [3] 任彦, 刘正华, 周锐. 滑模干扰观测器在低速光电跟踪系统中的应用[J]. 北京麻豆精品秘 国产传媒学报, 2013, 39(6): 835-840.

    REN Y, LIU Z H, ZHOU R. Application of low speed opto-electronic tracking systems based on sliding mode distutbance observer[J]. [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6): 835-840(in Chinese).
    [4] 王伟, 刘云清, 董岩, 等. 空间激光通信中复合跟踪技术研究[J]. 激光与红外, 2020, 50(4): 403-406. doi: 10.3969/j.issn.1001-5078.2020.04.003

    WANG W, LIU Y Q, DONG Y, et al. Research on composite tracking technology in space laser communication[J]. Laser & Infrared, 2020, 50(4): 403-406(in Chinese). doi: 10.3969/j.issn.1001-5078.2020.04.003
    [5] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315.

    TANG T, MA J G, CHEN H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 200315(in Chinese).
    [6] BURNSIDE J W, CONRAD S D, PILLSBURY A D, et al. Design of an inertially stabilized telescope for the LLCD[C]//Proceedings of the Free-Space Laser Communication Technologies XXIII. Bellingham: SPIE, 2011.
    [7] BURNSIDE J W, MURPHY D V, KNIGHT F K, et al. A hybrid stabilization approach for deep-space optical communications terminals[J]. Proceedings of the IEEE, 2007, 95(10): 2070-2081. doi: 10.1109/JPROC.2007.905101
    [8] LUNIEWICZ M F, GILMORE J P, CHIEN T T, et al. Comparison of wideband inertial line-of-sight stabilization reference mechanizations[C]//Proceedings of the Acquisition, Tracking, and Pointing VI. Bellingham: SPIE, 1992: 378-398.
    [9] XIA X Q, ZHANG B, LI X T. High precision low-speed control for permanent magnet synchronous motor[J]. Sensors, 2020, 20(5): 1526. doi: 10.3390/s20051526
    [10] 谢航. 动基座光电稳定平台视轴稳定技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    XIE H. Research on line-of-sight stabilization technology of photoelectric stabilization platform with moving base[D]. Changchun: University Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022(in Chinese).
    [11] LUNIEWICZ M F, MURPHY J, O’NEIL E, et al. Testing the inertial pseudo-star reference unit[C]//Proceedings of the Acquisition, Tracking, and Pointing VIII. Bellingham: SPIE, 1994: 638-649.
    [12] ECKELKAMP-BAKER D, SEBESTA H R, BURKHARD K. Magnetohydrodynamic inertial reference system[C]//Proceedings of the Acquisition, Tracking, and Pointing XIV. Bellingham: SPIE, 2000: 99-110.
    [13] HARUNA M, KODEKI K, SHIMIZU S, et al. Evaluation of developing inertial stabilization unit[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII. Bellingham: SPIE, 2015.
    [14] BLUEHALO. Optical inertial reference units (OIRU) [EB/OL]. (2022-02-27)[2023-07-01]. http://bluehalo.com/product/optical-inertial-reference-unit-oiru.
    [15] DENG J Q, XUE W C, ZHOU X, et al. On dual compensation to disturbances and uncertainties for inertially stabilized platforms[J]. International Journal of Control, Automation and Systems, 2022, 20(5): 1521-1534. doi: 10.1007/s12555-021-0022-3
    [16] TUO W X, LI X F, JI Y, et al. Mechanical design and determination of bandwidth for a two-axis inertial reference unit[J]. Mechanical Systems and Signal Processing, 2022, 172: 108962. doi: 10.1016/j.ymssp.2022.108962
    [17] ZHOU Z, LI X F, TUO W X. Design of disturbance suppression controller for optical inertial reference unit[C]//Proceedings of the International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems. Bellingham: SPIE, 2022.
    [18] 胡浩军. 运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D]. 长沙: 国防科学技术大学, 2005.

    HU H J. Research on line-of-sight stabilization technology of acquisition, tracking and aiming system of moving platform[D]. Changsha: National University of Defense Technology, 2005(in Chinese).
    [19] JACKA N, WALTER R, LAUGHLIN D, et al. Design of stabilized platforms for deep space optical communications (DSOC) [C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXIX. Bellingham: SPIE, 2017.
    [20] XIAO R J, XU M L, SHAO S B, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 2019, 126: 211-226. doi: 10.1016/j.ymssp.2019.02.028
    [21] SUN J J, DING Y L, ZHANG H W, et al. Conceptual design and image motion compensation rate analysis of two-axis fast steering mirror for dynamic scan and stare imaging system[J]. Sensors, 2021, 21(19): 6441. doi: 10.3390/s21196441
    [22] ZHANG W F, YUAN J, YAN C X, et al. Multi-objective optimization design of natural frequency of two-degree-of-freedom fast steering mirror system[J]. IEEE Access, 2021, 9: 33689-33703. doi: 10.1109/ACCESS.2021.3061473
    [23] 夏笠城, 王姝旸, 张晶, 等. 基于双频扩张状态观测器的无人机抗扰控制[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(5): 1201-1208.

    XIA L C, WANG S Y, ZHANG J, et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1201-1208(in Chinese).
    [24] LI J, ZHANG L Y, LUO L, et al. Extended state observer based current-constrained controller for a PMSM system in presence of disturbances: design, analysis and experiments[J]. Control Engineering Practice, 2023, 132: 105412. doi: 10.1016/j.conengprac.2022.105412
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  69
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-10-19
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答