留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双天线TDCP的GNSS/IMU组合导航航向角增强算法

吉莉 孙蕊 王媛媛 戴晔莹

吉莉,孙蕊,王媛媛,等. 基于双天线TDCP的GNSS/IMU组合导航航向角增强算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3141-3149 doi: 10.13700/j.bh.1001-5965.2023.0440
引用本文: 吉莉,孙蕊,王媛媛,等. 基于双天线TDCP的GNSS/IMU组合导航航向角增强算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3141-3149 doi: 10.13700/j.bh.1001-5965.2023.0440
JI L,SUN R,WANG Y Y,et al. Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3141-3149 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0440
Citation: JI L,SUN R,WANG Y Y,et al. Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3141-3149 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0440

基于双天线TDCP的GNSS/IMU组合导航航向角增强算法

doi: 10.13700/j.bh.1001-5965.2023.0440
基金项目: 

国家自然科学基金(42222401,42174025,41974033); 工信部专项科研项目(TC220A04A-79);江苏省“六大人才高峰”项目(KTHY-014); 江苏省自然科学基金(BK20211569); 中央高校基本科研业务费专项资金(xcxjh20220726)

详细信息
    通讯作者:

    E-mail:rui.sun@nuaa.edu.cn

  • 中图分类号: P228;V324;V249.3

Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP

Funds: 

National Natural Science Foundation of China (42222401,42174025,41974033); Ministry of Industry and Information Technology Special Project of China (TC220A04A-79); Jiangsu Provincial Six Talent Peaks Project (KTHY-014); Natural Science Foundation of Jiangsu Province (BK20211569); The Fundamental Research Funds for the Central Universities (xcxjh20220726)

More Information
  • 摘要:

    在全球导航卫星系统(GNSS)和惯性测量单元件(IMU)组合导航系统中,姿态估计尤其是航向角的准确估计对于车辆行驶状态的实时监控尤为重要。但由于IMU在高度通道上是发散的,若不加以准确约束其误差会逐渐累积,因此,在航向角变化频繁的车载应用中其航向角的估计精度不足。为解决传统GNSS与IMU松组合方式导航姿态估计精度较差的问题,提出一种基于双天线历元间载波相位差分(TDCP)的GNSS/IMU组合导航航向角增强算法。该算法通过双天线TDCP求解车辆航向角来增加组合导航滤波融合观测值输入维度,并利用Hatch滤波和抗差自适应滤波分别实现观测域伪距精度提升和GNSS/IMU组合导航定位、定姿性能的提升。实验结果表明:所提算法相对于传统GNSS/IMU组合导航方法在三维方向上的定位、测速精度分别提高了22.12%、41.27%,车辆航向角精度提高了46.29%。

     

  • 图 1  本文算法框架

    Figure 1.  The proposed algorithm framework

    图 2  历元间卫星与车辆的相对几何关系

    Figure 2.  Relative satellite vehicle geometry between two epochs

    图 3  历元间双天线相对几何关系

    Figure 3.  Relative geometry of two antennas between two epochs

    图 4  车载实验参考行驶轨迹

    Figure 4.  Reference driving track of onboard experiment

    图 5  实验车及搭载的实验设备

    Figure 5.  The experimental vehicle and the experimental equipment onboard

    图 6  可见卫星数

    Figure 6.  Number of visible satellites

    图 7  算法定位误差对比

    Figure 7.  Position errors comparison of the algorithms

    图 8  算法测速误差对比

    Figure 8.  Velocity errors comparison of the algorithms

    图 9  算法定姿误差

    Figure 9.  Attitude errors comparison of the algorithms

    图 10  不同行驶状态下的车辆航向角估计结果

    Figure 10.  Vehicle heading estimation results under different driving state

    表  1  算法定位误差均方根对比

    Table  1.   Position RMSE comparison of the algorithms

    对比算法 北向RMSE/m 东向RMSE/m 地向RMSE/m 水平RMSE/m 3D RMSE/m
    传统算法 2.1823 0.5544 3.4678 2.2516 4.1346
    本文算法 2.0027 0.3397 2.4984 2.0313 3.2200
    下载: 导出CSV

    表  2  算法测速误差均方根对比

    Table  2.   Velocity RMSE comparison of the algorithms

    对比算法 北向
    RMSE/m
    东向
    RMSE/m
    地向
    RMSE/m
    水平
    RMSE/m
    传统算法 0.1318 0.1153 0.0804 0.1751
    本文算法 0.0841 0.0592 0.0385 0.1028
    下载: 导出CSV

    表  3  算法定姿误差均方根对比

    Table  3.   Attitude RMSE comparison of the algorithms

    对比算法 滚转RMSE/(°) 俯仰RMSE/(°) 航向RMSE/(°)
    传统算法 0.5740 0.4538 0.3603
    本文算法 0.5253 0.4225 0.1935
    下载: 导出CSV
  • [1] FREDA P, ANGRISANO A, GAGLIONE S, et al. Time-differenced carrier phases technique for precise GNSS velocity estimation[J]. GPS Solutions, 2015, 19(2): 335-341. doi: 10.1007/s10291-014-0425-1
    [2] JI L, SUN R, CHENG Q, et al. Evaluation of the performance of GNSS-based velocity estimation algorithms[J]. Satellite Navigation, 2022, 3(1): 18. doi: 10.1186/s43020-022-00080-4
    [3] SUN R, CHENG Q, WANG J H. Precise vehicle dynamic heading and pitch angle estimation using time-differenced measurements from a single GNSS antenna[J]. GPS Solutions, 2020, 24(3): 84. doi: 10.1007/s10291-020-01000-2
    [4] KIM J, PARK M, BAE Y, et al. A low-cost, high-precision vehicle navigation system for deep urban multipath environment using TDCP measurements[J]. Sensors, 2020, 20(11): 3254. doi: 10.3390/s20113254
    [5] CHEN K, CHANG G, CHEN C, et al. An improved TDCP-GNSS/INS integration scheme considering small cycle slip for low-cost land vehicular applications[J]. Measurement Science and Technology, 2021, 32(5): 055006. doi: 10.1088/1361-6501/abd96c
    [6] JIAN W L, DONG Y, WANG D J, et al. A modified TDCP/INS tightly coupled navigation[C]//Proceedings of the China Satellite Navigation Conference. Berlin: Springer, 2019: 503-512.
    [7] XU G C. GPS: theory, algorithms and applications[M]. Berlin: Springer, 2007.
    [8] 甘雨, 隋立芬, 张清华, 等. 利用时间差分载波相位的GNSS/INS紧组合导航[J]. 测绘通报, 2015(6): 5-8.

    GAN Y, SUI L F, ZHANG Q H, et al. GNSS/INS integrated navigation using time-differenced carrier phase measurements[J]. Bulletin of Surveying and Mapping, 2015(6): 5-8(in Chinese).
    [9] QIAN N J, CHANG G B, GAO J X. GNSS pseudorange and time-differenced carrier phase measurements least-squares fusion algorithm and steady performance theoretical analysis[J]. Electronics Letters, 2019, 55(23): 1238-1241. doi: 10.1049/el.2019.2408
    [10] LI F C, GAO J X, ZHENG N S, et al. A novel dual-domain filtering method to improve GNSS performance based on a dynamic model constructed by TDCP[J]. IEEE Access, 2020, 8: 79716-79723. doi: 10.1109/ACCESS.2020.2990132
    [11] ZHANG Q H, CHEN Z S, RONG F J, et al. An improved Hatch filter and its application in kinematic positioning with single-frequency GPS[J]. Measurement, 2019, 146: 868-878. doi: 10.1016/j.measurement.2019.07.030
    [12] LEE H K, RIZOS C. Position-domain Hatch filter for kinematic differential GPS/GNSS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 30-40. doi: 10.1109/TAES.2008.4516987
    [13] PARK B, LIM C, YUN Y, et al. Optimal divergence-free hatch filter for GNSS single-frequency measurement[J]. Sensors, 2017, 17(3): 448. doi: 10.3390/s17030448
    [14] 陈正生, 张清华, 李林阳, 等. 电离层延迟变化自模型化的载波相位平滑伪距算法[J]. 测绘学报, 2019, 48(9): 1107-1118.

    CHEN Z S, ZHANG Q H, LI L Y, et al. An improved carrier phase smoothing pseudorange algorithm with self-modeling of ionospheric delay variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1107-1118(in Chinese).
    [15] 范士杰, 孔祥元. 基于Hatch滤波的GPS伪距相位平滑及其在单点定位中的应用[J]. 勘察科学技术, 2007(4): 40-42.

    FAN S J, KONG X Y. GPS carrier phase smoothing on code pseudorange based on the hatch filter and its application in point positioning[J]. Site Investigation Science and Technology, 2007(4): 40-42(in Chinese).
    [16] 陈正生, 张清华, 崔阳, 等. 单频载波相位移动开窗平滑伪距算法及精度分析[J]. 武汉大学学报(信息科学版), 2020, 45(7): 964-973.

    CHEN Z S, ZHANG Q H, CUI Y, et al. Single frequency carrier smoothing pseudorange algorithm and accuracy analysis based on moving window[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 964-973(in Chinese).
    [17] 杨元喜, 何海波, 徐天河. 论动态自适应滤波[J]. 测绘学报, 2001, 30(4): 293-298.

    YANG Y X, HE H B, XU T H. Adaptive robust filtering for kinematic GPS positioning[J]. Acta Geodaetica et Cartographic Sinica, 2001, 30(4): 293-298(in Chinese).
    [18] 杨元喜, 任夏, 许艳. 自适应抗差滤波理论及应用的主要进展[J]. 导航定位学报, 2013, 1(1): 9-15.

    YANG Y X, REN X, XU Y. Main progress of adaptively robust filter with applications in navigation[J]. Journal of Navigation and Positioning, 2013, 1(1): 9-15(in Chinese).
    [19] GAGLIONE S, ANGRISANO A, CROCETTO N. Robust Kalman filter applied to GNSS positioning in harsh environment[C]//Proceedings of the European Navigation Conference. Piscataway: IEEE Press, 2019: 1-6.
    [20] HE W, LIAN B W, TANG C K. GNSS/INS integrated navigation system based on adaptive robust Kalman filter restraining outliers[C]//Proceedings of the IEEE/CIC International Conference on Communications in China-Workshops. Piscataway: IEEE Press, 2014: 32-35.
    [21] KIM L, LEE Y, LEE H K. Kalman–Hatch dual-filter integrating global navigation satellite system/inertial navigation system/on-board diagnostics/altimeter for precise positioning in urban canyons[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 379-397.
    [22] 王坚, 刘超, 高井祥, 等. 基于抗差EKF的GNSS/INS紧组合算法研究[J]. 武汉大学学报(信息科学版), 2011, 36(5): 596-600.

    WANG J, LIU C, GAO J X, et al. GNSS/INS tightly coupled navigation model based on robust EKF[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 596-600(in Chinese).
    [23] CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6503-6515. doi: 10.1109/TITS.2020.2993052
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  171
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 录用日期:  2023-08-11
  • 网络出版日期:  2023-09-18
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答