留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨控发动机含冰晶多相羽流辐射特性

罗吴迪 任军学 李志辉 汤海滨

罗吴迪,任军学,李志辉,等. 轨控发动机含冰晶多相羽流辐射特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3130-3140 doi: 10.13700/j.bh.1001-5965.2023.0439
引用本文: 罗吴迪,任军学,李志辉,等. 轨控发动机含冰晶多相羽流辐射特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3130-3140 doi: 10.13700/j.bh.1001-5965.2023.0439
LUO W D,REN J X,LI Z H,et al. Radiation characteristics of multi-phase plumes containing ice crystals from orbit-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3130-3140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0439
Citation: LUO W D,REN J X,LI Z H,et al. Radiation characteristics of multi-phase plumes containing ice crystals from orbit-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3130-3140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0439

轨控发动机含冰晶多相羽流辐射特性

doi: 10.13700/j.bh.1001-5965.2023.0439
详细信息
    通讯作者:

    E-mail:rjx_buaa@163.com

  • 中图分类号: V435

Radiation characteristics of multi-phase plumes containing ice crystals from orbit-control engines

More Information
  • 摘要:

    为获得高空轨控发动机含冰晶的多相羽流的辐射特性,分析其对遥测效果的影响,基于爱因斯坦辐射理论,推导了气体辐射发射系数,结合微粒散射Mie理论,获得综合考虑气体热辐射和冰晶辐射与冰晶散射的辐射传输模型。基于最新的HITRAN2020谱线库,仿真得到了高空轨控发动机含冰晶多相羽流辐射特性参数以及近红外、中长波红外等波段辐射强度分布,并分析了辐射的主要影响因素。结果表明:该型发动机羽流辐射主要包括近红外波段的冰晶散射和中长波红外波段的气体热辐射。在近红外波段,考虑太阳背景辐射,计算域内总辐射量约10−6 W/sr量级,轴向距离0.5 m以内,气体热辐射占主导,轴向距离0.5 m以外,冰晶散射占主导;在中长波红外波段,计算域内总辐射量约10 W/sr量级,轴向距离1 m以内,气体热辐射占主导,轴向距离1 m以外,冰晶热辐射占主导。

     

  • 图 1  地球附近太阳辐射亮度

    Figure 1.  The Sun’s radiance near the Earth

    图 2  冰晶和气体的微粒数密度分布

    Figure 2.  Number density distributions of particles for ice crystals and gases

    图 3  冰晶和气体的温度分布

    Figure 3.  Temperature distributions of ice crystals and gases

    图 4  冰晶粒度分布

    Figure 4.  Ice crystal size distribution

    图 5  CO2吸收系数谱比较

    Figure 5.  Comparison of CO2 absorption coefficient spectra

    图 6  冰晶吸收系数与散射系数(d = 3×10−8 m, n = 1×1014 m−3

    Figure 6.  Absorption coefficient and scattering coefficient of ice crystals (d = 3 × 10−8 m, n = 1 × 1014 m−3)

    图 7  尾焰核心区域热辐射发射谱

    Figure 7.  Thermal emission spectra in core region of plume

    图 8  0.77~1.25 μm波段辐射吸收系数(p=500 Pa,T=296 K)

    Figure 8.  Radiation absorption coefficient of 0.77–1.25 μm band (p = 500 Pa, T = 296 K)

    图 9  0.77~1.25 μm波段的尾焰辐射亮度分布

    Figure 9.  Radiance of plume in 0.77–1.25 μm band

    图 10  2.4~10 μm波段辐射吸收系数(p=500 Pa,T=296 K)

    Figure 10.  Radiation absorption coefficient of 2.4−10 μm band (p = 500 Pa, T = 296 K)

    图 11  2.5~10 μm波段的尾焰辐射亮度分布

    Figure 11.  Radiance of plume in 2.5−10 μm band

    图 12  近轴区域气固两相密度与温度分布

    Figure 12.  Density and temperature distributions of gas and ice crystals in paraxial region

    图 13  沿轴线方向羽流各组分近红外波段辐射贡献

    Figure 13.  Near-infrared radiation contribution of plume components along axis

    图 14  沿轴线方向羽流各组分中长波红外波段辐射贡献

    Figure 14.  Mid-wave and long-wave infrared radiation contribution of plume components along axis

    图 15  5900 K和300 K下黑体辐射强度对比

    Figure 15.  Comparison of blackbody radiation intensity at 5900 K and 300 K

    图 16  瑞利散射模型散射相函数

    Figure 16.  Scattering phase function of Rayleigh scattering model

    表  1  羽流气体分压占比

    Table  1.   Partial pressure proportions of gases in plume

    组分占比/%
    N230.53
    H2O31.13
    CO14.21
    H220.99
    CO23.14
    下载: 导出CSV

    表  2  计算域内各波段羽流辐射与散射计算结果

    Table  2.   Calculation results of plume radiation and scattering in each band in calculation domain

    辐射波段 波长/${\text{μm}}$ 总辐射量/(W·sr−1) 辐射在该波段占比/%
    近红外波段0.77~1.253.7×10−6100
    中长波红外波段2.5~3.31.83×10−418.9
    3.3~54.71×10−448.5
    5~103.17×10−432.6
    下载: 导出CSV
  • [1] 聂万胜, 蔡红华. 火箭发动机尾焰红外辐射特性研究综述[J]. 装备学院学报, 2017, 28(1): 47-53. doi: 10.3783/j.issn.2095-3828.2017.01.011

    NIE W S, CAI H H. Overview of infrared characteristics study of rocket engine plume[J]. Journal of Equipment Academy, 2017, 28(1): 47-53(in Chinese). doi: 10.3783/j.issn.2095-3828.2017.01.011
    [2] ROCHELLE W C. Review of thermal radiation from liquid and solid propellant rocket exhausts[R]. Washington, D.C.: NASA, 1967: 7-201.
    [3] NELSON H F. Infrared radiation signature of tactical rocket exhausts: AIAA 1982-913[R]. Reston: AIAA, 1982.
    [4] SNAZA C J. Investigation of the effects of solid rocket motor propellant composition on plume signature[D]. Monterey: Naval Postgraduate School, 1994: 17-25.
    [5] HARWELL K, HYMAN W H, JACKSON J J, et al. Effects of external flow velocity on the spatial distribution of infrared radiation from a rocket exhaust plume[C]//Proceedings of the 11th Thermophysics Conference. Reston: AIAA, 1976: 443.
    [6] 王平. 固体火箭发动机尾焰毫米波辐射特性研究[D]. 武汉: 华中科技大学, 2015.

    WANG P. Study on millimeter wave radiation characteristics of solid rocket motor tail flame[D]. Wuhan: Huazhong University of Science and Technology, 2015(in Chinese).
    [7] 张小英, 朱定强, 向红军, 等. 液体火箭喷焰红外特性的数值仿真[J]. 北京麻豆精品秘 国产传媒学报, 2005, 31(11): 1250-1253. doi: 10.3969/j.issn.1001-5965.2005.11.021

    ZHANG X Y, ZHU D Q, XIANG H J, et al. Numerical simulation of infrared characteristics of liquid rocket plume[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(11): 1250-1253(in Chinese). doi: 10.3969/j.issn.1001-5965.2005.11.021
    [8] 郑海晶. 火箭发动机尾焰多波段辐射特性研究[D]. 北京: 北京理工大学, 2018.

    ZHENG H J. Study on multi-band radiation characteristics of rocket engine tail flame[D]. Beijing: Beijing Institute of Technology, 2018(in Chinese).
    [9] 乔野, 聂万胜, 丰松江, 等. 复燃对氢氧火箭发动机尾焰流场及辐射特性影响数值研究[J]. 导弹与航天运载技术, 2016(2): 22-25.

    QIAO Y, NIE W S, FENG S J, et al. Numerical research on influence exerted by afterburning on flow field and radiation characteristics of LH2/LOX rocket engine[J]. Missiles and Space Vehicles, 2016(2): 22-25(in Chinese).
    [10] BAO X D, YU X L, WANG Z H, et al. Numerical investigation on flow and radiation characteristics of solid rocket motor plume near the ground[J]. Procedia Computer Science, 2020, 174: 645-650. doi: 10.1016/j.procs.2020.06.137
    [11] BURT J, BOYD I. A Monte Carlo radiation model for simulating rarefied multiphase plume flows[C]//Proceedings of 38th AIAA Thermophysics Conference. Reston: AIAA, 2005: 4691.
    [12] YU Q Z, LIU L H, PAN Y C, et al. Monte Carlo method for simulating the radiative characteristics of an anisotropic medium[J]. Heat Transfer—Asian Research, 1999, 28(3): 201-210. doi: 10.1002/(SICI)1523-1496(1999)28:3<201::AID-HTJ5>3.0.CO;2-R
    [13] 郑才浪, 朱定强, 乔要宾. 固液混合火箭发动机尾焰的红外特性研究[J]. 红外, 2013, 34(10): 26.

    ZHENG C L, ZHU D Q, QIAO Y B. Study of infrared radiation characteristics of hybrid rocket engine exhaust plume[J]. Infrared, 2013, 34(10): 26(in Chinese).
    [14] CAI H H, NIE W S, SU L Y, et al. Infrared radiation characteristics of liquid oxygen/kerosene rocket engine plume with different number of nozzles[J]. Spectroscopy Letters, 2019, 52(3-4): 159-167. doi: 10.1080/00387010.2018.1510840
    [15] 郑才浪, 朱定强, 乔要宾. 轨控发动机羽流红外辐射的数值仿真[J]. 宇航学报, 2014, 35(5): 521-527.

    ZHENG C L, ZHU D Q, QIAO Y B. Numerical simulation of the infrared radiation of orbit control thruster exhaust plume[J]. Journal of Astronautics, 2014, 35(5): 521-527(in Chinese).
    [16] NIU Q L, HE Z H, DONG S K. IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1101-1114. doi: 10.1016/j.cja.2017.04.003
    [17] ZHANG D M, BAI L, WANG Y K, et al. An improved SHDOM coupled with CFD for simulating infrared radiation signatures of rocket plumes[J]. Infrared Physics & Technology, 2022, 122: 104054.
    [18] 王福恒, 王嵩薇. 近代科学技术中的原子分子辐射理论[M]. 成都: 成都科技大学出版社, 1991: 33-35.

    WANG F H, WANG S W. The theory of atomic and molecular radiation in modern science and technology[M]. Chengdu: Chengdu University of Science and Technology Press, 1991: 33-35(in Chinese).
    [19] MIE G. Beiträge zur optik trüber medien, speziell kolloidaler Metallösungen[J]. Annalen der Physik, 1908, 330: 377-445. doi: 10.1002/andp.19083300302
    [20] FRISVAD J R, CHRISTENSEN N J, JENSEN H W. Computing the scattering properties of participating media using Lorenz-Mie theory[C]//ACM SIGGRAPH 2007. New York: ACM, 2007: 60-es.
    [21] 邱荣, 吴健, 杨春平, 等. 0.45-0.95μm太阳辐射在大气中的传输计算[J]. 大气与环境光学学报, 2006, 1(1): 21-26.

    QIU R, WU J, YANG C P, et al. Solar radiation transfer in clear atmosphere at 0.45~0.95 μm[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(1): 21-26(in Chinese).
    [22] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994.
    [23] BURT J M, BOYD I D. Monte Carlo simulation of a rarefied multiphase plume flow[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
    [24] LOTHE J, POUND G M. Reconsideration of nucleation theory[J]. The Journal of Chemical Physics, 1962, 36(8): 2080-2085. doi: 10.1063/1.1732832
    [25] KOCHANOV R V, GORDON I E, ROTHMAN L S, et al. HITRAN application programming interface (HAPI): a comprehensive approach to working with spectroscopic data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 177: 15-30. doi: 10.1016/j.jqsrt.2016.03.005
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-09-11
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答