-
摘要:
针对哈里斯鹰优化(HHO)算法存在种群学习性与适应性不足的问题,提出一种基于信噪比的学习型哈里斯鹰优化(SLHHO)算法。该算法通过引入信噪比的概念来判断个体的位置信息,设计了一种协调学习策略,可以更合理地更新种群内个体的位置,进而对逃逸距离重新设计,提升了算法的适应与寻优能力。以12个基准函数为标准,将所提算法与哈里斯鹰算法的变体及其他算法进行性能测试,并在时间复杂度、多样性、探索与开发等评价指标中进行对比分析,结果显示,SLHHO算法具有较强的竞争力与可行性,在压力容器设计问题中,验证了SLHHO算法的实用性。
Abstract:Aiming at the problem of insufficient population learning and adaptability of the Harris hawks optimization (HHO) algorithm, this paper proposes a learning Harris hawks optimization based on the signal-to-noise ratio(SLHHO)algorithm. By using the signal-to-noise ratio as a metric to assess individual position information, the algorithm creates a coordinated learning strategy that can more realistically update the positions of individuals within the population. It then reworks the escape distance to enhance the algorithm’s capacity for adaptation and optimization seeking. With 12 benchmark functions as the standard, the proposed algorithm was tested for its performance with the variants of the Harris hawk algorithm and other algorithms, and compared and analyzed in the evaluation indexes such as time complexity, diversity, exploration and development, etc. The results show that SLHHO algorithm is highly competitive and feasible, and finally, its practicability is verified in the pressure vessel design problem.
-
表 1 各函数信息
Table 1. Information for each function
函数 区间 最小值 $ {f}_{1}\left(x\right)=\displaystyle\sum_{i=1}^{n}{x}_{i}^{2} $ [−100,100] 0 $ {f}_{2}\left(x\right)=\displaystyle\sum_{i=1}^{n}\left|{x}_{i}\right|+\prod _{i=1}^{n}\left|{x}_{i}\right| $ [−10,10] 0 $ {f}_{3}\left(x\right)=\displaystyle\sum_{i=1}^{n}\left(\displaystyle\sum_{j=1}^{i}{x}_{j}\right)^{2} $ [−100,100] 0 ${f}_{4}\left(x\right)={\rm{max} }_{i}\left\{\left|{x}_{i}\right|,1 \leqslant i \leqslant n\right\}$ [−100,100] 0 $ {f}_{5}\left(x\right)=\displaystyle\sum _{i=1}^{n-1}[100{\left({x}_{i+1}-{x}_{i}^{2}\right)}^{2}+{({x}_{i}-1)}^{2}] $ [−30,30] 0 $ {f}_{6}\left(x\right)=\displaystyle\sum _{i=1}^{n}{\left( {x}_{i}+0.5 \right)}^{2} $ [−100,100] 0 ${f}_{7}\left(x\right)=\displaystyle\sum _{i=1}^{n}{ix}_{i}^{4}+{\rm{random}}\left[\mathrm{0,1}\right)$ [−1.28,1.28] 0 $ {f}_{8}\left(x\right)=\displaystyle\sum _{i=1}^{n}-{x}_{i}\mathrm{s}\mathrm{i}\mathrm{n}\left(\sqrt{\left|{x}_{i}\right|}\right) $ [−500,500] −418.9829 n${f}_{9}\left(x\right)=\displaystyle\sum _{i=1}^{n}({x}_{i}^{2}-10\mathrm{cos}\left(2 \text{π} {x}_{i}\right)+10)$ [−5.12,5.12] 0 ${f}_{10}\left(x\right)=-20\mathrm{exp}\left(-0.2\sqrt{\dfrac{1}{n}\sum\limits_{i = 1}^n {x}_{i}^{2} }\right)-\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{1}{n}\sum\limits_{i = 1}^n \mathrm{cos}\left(2 \text{π} {x}_{i}\right)\right)+20+{\rm{e}}$ [−32,32] 0 $ {f}_{11}\left(x\right)=\dfrac{1}{4\;000}\displaystyle\sum _{i=1}^{n}{x}^{2}-\prod _{i=1}^{n}\mathrm{c}\mathrm{o}\mathrm{s}\left(\dfrac{{x}_{i}}{\sqrt{i}}\right) $ [−600,600] 0 $\left\{\begin{gathered}{f}_{12}\left(x\right)=\dfrac{ \text{π} }{n}\left[10\mathrm{sin}\left( \text{π} {y}_{1}\right)+\displaystyle\sum _{i=1}^{n-1}{\left({y}_{i}-1\right)}^{2}\left(1+10{\mathrm{sin} }^{2}\left( \text{π} {y}_{i+1}\right)\right)+{\left({y}_{n}-1\right)}^{2}\right]+\displaystyle\sum _{i=1}^{n}u\left({x}_{i},10, \mathrm{100,4}\right) \\{y}_{i}=1+\dfrac{{x}_{i}+1}{4} \\ u\left({x}_{i},a,k,m\right)=\left\{\begin{array}{*{20}{l}}k{\left({x}_{i}-a\right)}^{m} & {x}_{i} > a\\ 0 & -a < {x}_{i} < a\\ k{\left(-{x}_{i}-a\right)}^{m} & {x}_{i} < -a\end{array}\right. \\\end{gathered}\right. $ $ [-\mathrm{50,50}] $ 0 表 2 各算法需设置的内部参数
Table 2. Internal parameters to be set for each algorithm
表 3 SLHHO算法与其他算法的变体
Table 3. SLHHO algorithm and other algorithm variants
算法 fmin f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 8.60×10−231 4.89×10−100 1.25×10−59 0 0 2.82×10−6 −1.26×104 0 8.88×10−16 0 3.58×10−19 ATOA[26] 5.59×10−12 1.18×10−39 4.12×10−3 2.79×10−3 2.88×10+1 5.56×10−1 6.13×10−4 −6.67×103 0 3.97×10−10 0 2.53×10−1 DAOA[27] 4.21×104 0 0 7.57×101 7.36×103 4.61×104 3.49×10−2 −4.03×103 3.57×101 8.88×10−16 9.19×101 1.85×108 EJAYA[28] 6.17×10−6 1.52×10−3 1.57 1.27×10−1 2.31×101 1.37×10−5 6.34×10−3 −7.30×103 8.05 3.06×10−3 1.48×10−5 3.39×10−7 IGWO[29] 6.14×10−34 1.85×10−21 3.52×10−5 8.41×10−9 2.51×101 3.93×10−2 6.78×10−4 −7.55×103 5.68 1.15×10−14 0 1.12×10−3 MFPA[30] 1.27 9.02×10−4 3.84×102 8.28 2.20×101 2.69 7.71×10−2 −1.08×104 2.15×101 2.57 8.57×10−1 7.38×10−1 PSOGSA[31] 4.88×10−19 3.05×10−9 1.08×103 1.85×101 1.87×101 4.84×10−19 1.89×10−2 −9.76×103 7.86×101 5.80×10−10 7.94×10−3 3.10×10−2 TACPSO[32] 1.59×10−8 8.43×10−5 2.02 6.52×10−1 2.78 2.33×10−9 5.95×10−3 −1.04×104 2.89×101 1.04×10−4 4.90×10−9 4.05×10−8 HHO[9] 3.64×10−44 3.02×10−19 3.15×10−32 2.08×10−20 1.14×10−5 4.97×10−9 2.58×10−6 −1.26×104 0 8.88×10−16 0 1.65×10−8 算法 fave f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 8.85×10−58 5.45×10−82 1.95×10−50 1.66×10−7 6.05×10−12 4.34×10−5 −1.26×104 0 8.88×10−16 0 1.48×10−8 ATOA[26] 7.56×10−4 7.02×10−4 4.00×102 3.47×10−2 2.92×101 8.05×10−1 5.62×10−3 −5.34×103 0 9.30×10−3 5.17×10−7 9.47×10−1 DAOA[27] 6.12×104 4.23×101 7.82×104 8.40×101 1.06×104 5.95×104 3.11×101 −2.75×103 1.13×102 1.08×101 5.13×102 4.69×108 EJAYA[28] 7.52×10−5 6.34×10−3 9.76 4.80×10−1 2.41×10+1 9.62×10−5 1.48×10−2 −6.37×103 5.00×101 1.64 1.70×10−2 1.03×10−1 IGWO[29] 1.04×10−31 8.36×10−21 4.15×10−3 4.58×10−7 2.55×101 8.72×10−2 2.14×10−3 −5.88×103 6.45×101 1.76×10−14 6.55×10−3 3.80×10−3 MFPA[30] 1.12×101 3.29×10−2 1.63×103 1.56×101 2.99×101 6.86 1.54×10−1 −8.20×103 5.66×101 1.50×101 1.07 4.24 PSOGSA[31] 2.02×10−1 1.87×10−2 6.94×103 3.56×101 2.44×101 3.37×102 5.89×10−2 −8.32×103 1.23×102 1.02×101 9.21 4.50 TACPSO[32] 6.55×10−5 4.87×10−3 4.29×101 2.02 3.33×101 8.81×10−5 1.88×10−2 −9.27×103 5.82×101 7.01×10−1 1.32×10−2 2.07×10−1 HHO[9] 1.44×10−27 2.18×10−15 3.00×10−17 1.83×10−15 8.10×10−4 1.08×10−5 1.12×10−4 −1.26×104 0 2.79×10−14 0 7.97×10−7 算法 fstd f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 4.85×10−57 2.22×10−81 9.12×10−50 9.07×10−7 2.63×10−11 4.05×10−5 2.48×10−2 0 1.00×10−31 0 7.42×10−8 ATOA[26] 9.91×10−4 3.83×10−3 2.18×10+3 1.83×10−2 1.16 1.83×10−1 4.12×10−3 5.50×102 0 1.23×10−2 2.83×10−6 5.89×10−1 DAOA[27] 6.62×103 1.35×101 3.41×104 3.79 1.37×103 5.42×103 2.55×101 4.73×102 3.60×101 9.62 1.03×102 1.08×108 EJAYA[28] 9.26×10−5 4.82×10−3 9.07 2.16×10−1 5.34×10−1 7.18×10−5 4.96×10−3 6.31×102 3.22×101 6.13×10−1 3.75×10−2 1.41×10−1 IGWO[29] 1.84×10−31 7.11×10−21 9.53×10−3 3.44×10−7 1.97×10−1 7.33×10−2 1.22×10−3 6.19×102 4.94×101 3.51×10−15 1.30×10−2 2.34×10−3 MFPA[30] 1.93×101 8.68×10−2 7.72×102 4.10 7.96 4.40 4.36×10−2 1.12×103 1.81×101 6.80 7.77×10−2 2.31 PSOGSA[31] 5.74×10−1 5.64×10−2 3.89×103 1.96×101 1.92 1.84×103 1.62×10−2 7.08×102 2.83×101 6.78 2.75×101 3.25 TACPSO[32] 3.28×10−4 4.94×10−3 4.02×101 1.32 2.33×101 4.33×10−4 7.82×10−3 6.19×102 1.90×101 7.05×10−1 1.44×10−2 2.79×10−1 HHO[9] 6.83×10−27 4.05×10−15 1.64×10−16 4.48×10−15 1.13×10−3 1.82×10−5 1.45×10−4 1.75×10−1 0 1.31×10−13 0 8.28×10−7 算法 fcm f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO ATOA[26] + + + + + + + + = + + + DAOA[27] + + + + + + + + + + + + EJAYA[28] + + + + + + + + + + + + IGWO[29] + + + + + + + + + + + + MFPA[30] + + + + + + + + + + + + PSOGSA[31] + + + + + + + + + + + + TACPSO[32] + + + + + + + + + + + + HHO[9] + + + + + + + + = + = + 算法 frank f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 1 1 1 1 1 1 1 1 1 1 1 1 ATOA[26] 6 4 6 4 6 6 4 8 1 4 2 6 DAOA[27] 9 9 9 9 9 9 9 9 6 8 8 9 EJAYA[28] 5 6 4 5 3 4 5 6 2 6 5 4 IGWO[29] 2 2 3 3 5 5 3 7 5 2 3 3 MFPA[30] 8 8 7 7 7 7 8 5 3 9 6 7 PSOGSA[31] 7 7 8 8 4 8 7 4 7 7 7 8 TACPSO[32] 4 5 5 6 8 3 6 3 4 5 4 5 HHO[9] 3 3 2 2 2 2 2 2 1 3 1 2 表 4 SLHHO算法与HHO算法的变体(维度为30)
Table 4. SLHHO algorithm and HHO algorithm variants (dim=30)
算法 fmin f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 0 4.89×10−100 1.25×10−59 0 0 2.82×10−6 −8.60 0 8.88×10−16 0 3.58×10−19 NCHHO[33] 3.93×10−246 3.93×10−246 1.75×10−220 1.73×10−115 2.88×101 1.62 4.24×10−6 −6.80 0 8.88×10−16 0 4.56×10−2 LMHHO[34] 3.07×10−44 3.07×10−44 3.01×10−44 1.31×10−25 7.35×10−9 1.33×10−10 5.00×10−7 −8.60 0 8.88×10−16 0 5.54×10−10 LHHO[35] 3.14×10−75 3.14×10−75 3.09×10−70 4.16×10−39 2.27×10−6 1.10×10−10 1.23×10−5 −8.60 0 8.88×10−16 0 3.61×10−10 THHO[10] 1.28×10−246 1.28×10−246 4.75×10−246 2.62×10−127 7.20×10−8 2.95×10−13 1.48×10−6 −8.60 0 8.88×10−16 0 9.20×10−12 DAHHO[20] 2.03×10−60 2.03×10−60 1.30×10−50 1.03×10−30 2.54×10−6 4.11×10−8 2.37×10−6 −8.60 0 8.88×10−16 0 6.93×10−8 JOS-HHO[36] 1.50×10−16 1.50×10−16 1.39×10−15 1.11×10−9 8.06×10−5 5.24×10−5 6.60×10−6 −8.60 0 8.77×10−11 0 9.23×10−7 HHO-1 8.19×10−42 8.19×10−42 2.68×10−30 3.25×10−18 0 1.51×10−8 4.06×10−5 −8.60 0 8.88×10−16 0 3.74×10−10 HHO-2 7.82×10−123 7.82×10−123 4.38×10−104 1.48×10−59 5.19×10−8 5.48×10−7 2.88×10−6 −8.60 0 8.88×10−16 0 5.90×10−24 算法 fave f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 8.85×10−58 5.45×10−82 1.95×10−50 1.66×10−7 6.05×10−12 4.34×10−5 −8.60 0 8.88×10−16 0 1.48×10−8 NCHHO[33] 3.61×10−222 9.70×10−115 3.26×10−202 2.25×10−106 2.88×101 2.36 6.59×10−5 −6.16×101 0 8.88×10−16 0 1.02×10−1 LMHHO[34] 1.33×10−29 6.45×10−16 7.63×10−28 3.78×10−16 1.70×10−4 5.98×10−7 6.22×10−5 −8.60 0 1.36×10−15 0 2.11×10−7 LHHO[35] 5.71×10−64 4.29×10−32 2.86×10−54 8.66×10−33 3.85×10−3 2.21×10−6 9.27×10−5 −8.60 0 8.88×10−16 0 1.03×10−6 THHO[10] 3.67×10−234 9.42×10−117 3.74×10−226 9.85×10−117 1.46×10−3 6.16×10−7 7.59×10−5 −8.60 0 8.88×10−16 0 2.46×10−6 DAHHO[20] 1.36×10−47 2.04×10−26 2.55×10−35 4.94×10−26 5.28×10−3 4.96×10−5 8.77×10−5 −8.60 0 8.88×10−16 0 3.76×10−6 JOS-HHO[36] 6.37×10−10 6.25×10−6 2.59×10−7 6.87×10−6 1.51×10−2 1.47×10−3 3.38×10−4 −8.60 4.15×10−10 1.86×10−6 3.34×10−9 7.92×10−5 HHO-1 5.49×10−24 1.68×10−12 3.18×10−12 6.57×10−13 1.53×10−21 4.75×10−5 2.45×10−4 −8.60 0 1.30×10−12 0 2.63×10−6 HHO-2 9.46×10−102 2.31×10−55 3.35×10−89 7.67×10−53 1.84×10−4 3.42×10−5 5.91×10−5 −8.60 0 8.88×10−16 0 8.22×10−14 算法 fstd f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 0 4.85×10−57 2.22×10−81 9.12×10−50 9.07×10−7 2.63×10−11 4.05×10−5 2.48×10−2 0 1.00×10−31 0 7.42×10−8 NCHHO[33] 0 5.21×10−114 0 1.18×10−105 2.11×10−2 4.51×10−1 7.15×10−5 1.74×10+3 0 1.00×10−31 0 3.90×10−2 LMHHO[34] 5.41×10−29 1.59×10−15 3.94×10−27 1.78×10−15 4.21×10−4 9.84×10−7 5.70×10−5 3.49×10−2 0 2.59×10−15 0 4.59×10−7 LHHO[35] 1.68×10−63 1.71×10−31 8.21×10−54 2.98×10−32 7.80×10−3 3.19×10−6 5.07×10−5 1.82×10−2 0 1.00×10−31 0 1.77×10−6 THHO[10] 0 5.10×10−116 0 5.10×10−116 5.77×10−3 1.92×10−6 8.68×10−5 1.16 0 1.00×10−31 0 7.00×10−6 DAHHO[20] 7.25×10−47 8.76×10−26 1.09×10−34 1.25×10−25 5.54×10−3 7.85×10−5 1.04×10−4 5.42×10−1 0 1.00×10−31 0 5.35×10−6 JOS-HHO[36] 1.97×10−9 8.74×10−6 7.26×10−7 1.02×10−5 2.11×10−2 1.77×10−3 2.93×10−4 1.35 8.53×10−10 2.66×10−6 1.45×10−8 7.29×10−5 HHO-1 2.82×10−23 4.49×10−12 1.22×10−11 1.90×10−12 8.40×10−21 6.01×10−5 2.08×10−4 5.75×10−2 0 5.98×10−12 0 3.55×10−6 HHO-2 5.18×10−101 8.26×10−55 1.83×10−88 2.63×10−52 1.96×10−4 4.72×10−5 5.16×10−5 3.45×10−2 0 1.00×10−31 0 4.06×10−13 表 5 SLHHO算法与HHO算法的变体(维度为100)
Table 5. SLHHO algorithm and HHO algorithm variants (dim=100)
算法 fmin f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 1.10×10−112 2.48×10−68 2.05×10−105 2.70×10−60 0 5.56×10−8 1.85×10−6 −37.9 0 8.88×10−16 0 1.54×10−20 NCHHO[33] 1.25×10−239 6.64×10−122 3.12×10−214 1.28×10−116 9.82×101 5.87 2.51×10−6 −36.6 0 8.88×10−16 0 1.15×10−1 LMHHO[34] 2.28×10−42 5.70×10−23 9.74×10−38 2.61×10−23 2.51×10−7 5.25×10−11 4.95×10−6 −37.9 0 8.88×10−16 0 2.49×10−12 LHHO[35] 6.78×10−80 9.25×10−38 8.52×10−71 6.23×10−39 1.22×10−5 3.99×10−8 9.72×10−6 −37.9 0 8.88×10−16 0 7.51×10−11 THHO[10] 7.71×10−254 9.11×10−125 2.86×10−248 1.53×10−126 1.27×10−7 1.66×10−11 3.42×10−7 −37.9 0 8.88×10−16 0 8.16×10−13 DAHHO[20] 6.55×10−58 2.58×10−32 3.92×10−50 3.62×10−32 0 1.10×10−6 1.41×10−5 −37.9 0 8.88×10−16 0 5.71×10−9 JOS-HHO[36] 2.34×10−17 2.57×10−8 1.81×10−11 2.17×10−12 7.43×10−3 2.72×10−4 1.72×10−5 −37.9 0 1.46×10−10 1.89×10−15 7.14×10−7 HHO-1 9.94×10−21 2.09×10−11 2.41×10−20 2.00×10−10 2.11×10−5 4.57×10−5 3.40×10−6 −37.9 0 2.30×10−11 0 6.70×10−7 HHO-2 9.26×10−77 4.64×10−41 5.63×10−63 6.69×10−39 7.85×10−5 1.53×10−8 1.24×10−7 −37.9 0 8.88×10−16 0 1.32×10−8 算法 fave f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 5.33×10−99 3.46×10−54 1.73×10−77 2.41×10−50 0 2.01×10−4 4.90×10−5 −37.9 0 8.88×10−16 0 2.89×10−9 NCHHO[33] 5.23×10−220 2.09×10−115 2.42×10−198 3.53×10−107 9.83×101 7.95 8.19×10−5 −21.2 0 8.88×10−16 0 1.87×10−1 LMHHO[34] 1.16×10−30 2.17×10−14 1.01×10−25 3.41×10−16 5.20×10−4 1.74×10−6 7.11×10−5 −37.9 0 1.72×10−15 0 1.86×10−8 LHHO[35] 1.56×10−61 3.36×10−31 6.89×10−48 5.71×10−32 1.21×10−2 1.97×10−5 1.05×10−4 −37.9 0 8.88×10−16 0 8.80×10−7 THHO[10] 5.65×10−229 2.20×10−117 2.12×10−228 2.10×10−117 2.26×10−3 8.72×10−6 4.88×10−5 −37.9 0 8.88×10−16 0 1.94×10−8 DAHHO[20] 1.07×10−46 1.42×10−26 1.20×10−37 7.80×10−26 3.32×10−6 2.26×10−3 3.04×10−4 −37.9 0 8.88×10−16 0 9.55×10−6 JOS-HHO[36] 4.38×10−9 3.01×10−5 6.64×10−5 5.43×10−6 1.76×10−1 8.32×10−3 2.71×10−4 −37.9 7.18×10−9 4.93×10−6 5.14×10−9 5.67×10−5 HHO-1 2.98×10−10 3.02×10−7 3.06×10−8 5.27×10−7 5.05×10−2 5.54×10−3 1.22×10−4 −37.9 3.16×10−12 3.93×10−8 2.18×10−12 1.50×10−5 HHO-2 5.80×10−62 2.03×10−34 5.49×10−47 4.17×10−32 1.74×10−3 4.57×10−5 3.27×10−5 −37.9 0 8.88×10−16 0 4.15×10−7 算法 fstd f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 SLHHO 2.88×10−98 1.84×10−53 8.16×10−77 7.89×10−50 0 3.14×10−4 3.69×10−5 2.41×10−1 0 1.00×10−31 0 6.78×10−9 NCHHO[33] 0 8.89×10−115 0 1.77×10−106 6.68×10−2 1.95 7.59×10−5 8.50×103 0 1.00×10−31 0 6.79×10−2 LMHHO[34] 4.72×10−30 8.97×10−14 5.52×10−25 1.27×10−15 1.25×10−3 3.20×10−6 6.49×10−5 1.14 0 3.32×10−15 0 3.66×10−8 LHHO[35] 8.32×10−61 1.75×10−30 3.13×10−47 2.76×10−31 2.22×10−2 3.56×10−5 6.56×10−5 3.48×10−2 0 1.00×10−31 0 1.28×10−6 THHO[10] 0 1.08×10−116 0 7.70×10−117 8.19×10−3 2.88×10−5 4.07×10−5 3.57 0 1.00×10−31 0 5.66×10−8 DAHHO[20] 5.66×10−46 4.52×10−26 4.68×10−37 1.99×10−25 1.82×10−5 3.11×10−3 3.33×10−4 3.05 0 1.00×10−31 0 2.15×10−5 JOS-HHO[36] 1.07×10−8 4.91×10−5 2.04×10−4 1.09×10−5 2.07×10−1 8.01×10−3 2.48×10−4 2.68×101 3.64×10−8 1.20×10−5 1.19×10−8 6.68×10−5 HHO-1 1.62×10−9 6.43×10−7 6.42×10−8 1.47×10−6 6.57×10−2 4.61×10−3 1.76×10−4 7.88 1.14×10−11 7.55×10−8 6.06×10−12 2.02×10−5 HHO-2 3.15×10−61 9.48×10−34 2.23×10−46 1.51×10−31 2.60×10−3 6.19×10−5 2.90×10−5 3.59×10−1 0 0 0 5.59×10−7 表 6 不同维度下SLHHO算法与HHO算法的变体排序值
Table 6. Variant sorting values of SLHHO algorithm and HHO algorithm in different dimensions
表 7 压力容器设计问题优化结果
Table 7. Pressure vessel design problem optimization results
函数 fbest fmean fworst Ts/mm Th/mm R/mm L/mm SLHHO 5887.5364 5974.2155 7225.6231 0.7786 0.3853 40.3403 199.7153 HHO[9] 5981.9440 6909.8281 7654.0635 1.1752 0.5786 59.8934 37.9625 PSO[1] 5951.9270 6200.6677 7217.0457 0.8153 0.4030 42.2448 174.8309 GWO[3] 5981.9440 6909.8281 7654.0635 1.1752 0.5786 59.8934 37.9625 WOA[4] 6103.9794 7578.9269 10436.7044 0.8442 0.4089 42.7487 168.7424 -
[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948. [2] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. doi: 10.1109/MCI.2006.329691 [3] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007 [4] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008 [5] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. [6] ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. doi: 10.1016/j.engappai.2019.103300 [7] XIE L, HAN T, ZHOU H, et al. Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 9210050. doi: 10.1155/2021/9210050 [8] JIANG X Y, LI S. BAS: beetle antennae search algorithm for optimization problems[EB/OL]. (2017-10-30)[2023-02-01]. http://arxiv.org/abs/1710.10724. [9] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028 [10] JIAO S, CHONG G S, HUANG C C, et al. Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J]. Energy, 2020, 203: 117804. doi: 10.1016/j.energy.2020.117804 [11] 闫晓斌, 方洋旺, 彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(8): 2636-2645.YAN X B, FANG Y W, PENG W S. Multi-objective Harris hawk optimization algorithm based on adaptive Gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2636-2645(in Chinese). [12] ELGAMAL Z M, YASIN N B M, TUBISHAT M, et al. An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field[J]. IEEE Access, 2020, 8: 186638-186652. doi: 10.1109/ACCESS.2020.3029728 [13] 胡春安, 熊昱然. 多策略改进的混沌哈里斯鹰优化算法[J]. 计算机工程与科学, 2023, 45(9): 1648-1660. doi: 10.3969/j.issn.1007-130X.2023.09.014HU C A, XIONG Y R. A multi-strategy improved chaotic Harris hawk optimization algorithm[J]. Computer Engineering & Science, 2023, 45(9): 1648-1660(in Chinese). doi: 10.3969/j.issn.1007-130X.2023.09.014 [14] LI C Y, LI J, CHEN H L, et al. Enhanced Harris hawks optimization with multi-strategy for global optimization tasks[J]. Expert Systems with Applications, 2021, 185: 115499. doi: 10.1016/j.eswa.2021.115499 [15] 李岩, 钱谦. 基于多种群与协同量子化的哈里斯鹰优化算法[J]. 控制与决策, 2024, 39(7): 2169-2176.LI Y, QIAN Q. Harris hawks optimization algorithm based on multigroup and collaborative quantization[J]. Control and Decision, 2024, 39(7): 2169-2176(in Chinese). [16] 柴岩, 任生. 双向经验引导与极端个体调控的HHO算法[J]. 计算机科学与探索, 2023, 17(9): 2118-2136. doi: 10.3778/j.issn.1673-9418.2203134CHAI Y, REN S. HHO algorithm based on bidirectional experience guidance and extreme individual regulation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2118-2136(in Chinese). doi: 10.3778/j.issn.1673-9418.2203134 [17] 刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J]. 控制与决策, 2022, 37(10): 2467-2476.LIU X L, LIANG T Y. Harris hawk optimization algorithm based on square neighborhood and random array[J]. Control and Decision, 2022, 37(10): 2467-2476(in Chinese). [18] 展广涵, 王雨虹, 刘昊. 混合策略改进的哈里斯鹰优化算法及其应用[J]. 传感技术学报, 2022, 35(10): 1394-1403.ZHAN G H, WANG Y H, LIU H. Improved Harris hawks optimization algorithm with hybrid strategy and its application[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1394-1403(in Chinese). [19] 赵峰, 徐丹华. 基于混沌扰动与柯西变异的HHO算法[J]. 安徽大学学报(自然科学版), 2023, 47(4): 25-34.ZHAO F, XU D H. HHO algorithm based on chaotic perturbation and Cauchy mutation[J]. Journal of Anhui University (Natural Science Edition), 2023, 47(4): 25-34(in Chinese). [20] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104-116. doi: 10.11992/tis.202108031JIA H M, LIU Q X, LIU Y X, et al. Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 104-116(in Chinese). doi: 10.11992/tis.202108031 [21] YU J H, YANG J H. Adaptive multi-strategy learning particle swarm optimization with evolutionary state estimation[M]//Bio-Inspired Computing: theories and Applications. Berlin: Springer, 2022: 174-186. [22] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009, 10: 207-244. [23] YUAN T T, DENG W H, TANG J, et al. Signal-to-noise ratio: a robust distance metric for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4810-4819. [24] YANG J H, YU J H, HUANG C. Adaptive multistrategy ensemble particle swarm optimization with signal-to-noise ratio distance metric[J]. Information Sciences, 2022, 612: 1066-1094. doi: 10.1016/j.ins.2022.07.165 [25] 高建瓴, 喻明毫. 混合差分进化与二次插值改进哈里斯鹰算法[J]. 小型微型计算机系统, 2023, 44(7): 1352-1359.GAO J L, YU M H. Hybrid differential evolution and quadratic interpolation improved Harris hawks optimization algorithm[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1352-1359(in Chinese). [26] DEVAN P A M, HUSSIN F A, IBRAHIM R B, et al. An arithmetic-trigonometric optimization algorithm with application for control of real-time pressure process plant[J]. Sensors, 2022, 22(2): 617. doi: 10.3390/s22020617 [27] KHODADADI N, SNASEL V, MIRJALILI S. Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints[J]. IEEE Access, 2022, 10: 16188-16208. doi: 10.1109/ACCESS.2022.3146374 [28] ZHANG Y Y, CHI A N, MIRJALILI S. Enhanced Jaya algorithm: a simple but efficient optimization method for constrained engineering design problems[J]. Knowledge-Based Systems, 2021, 233: 107555. doi: 10.1016/j.knosys.2021.107555 [29] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917 [30] NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert Systems with Applications, 2016, 57: 192-203. doi: 10.1016/j.eswa.2016.03.047 [31] MIRJALILI S, HASHIM S Z M. A new hybrid PSOGSA algorithm for function optimization[C]//Proceedings of the International Conference on Computer and Information Application. Piscataway: IEEE Press, 2010: 374-377. [32] TANG Z Y, ZHANG D X. A modified particle swarm optimization with an adaptive acceleration coefficients[C]//Proceedings of the Asia-Pacific Conference on Information Processing. Piscataway: IEEE Press, 2009: 330-332. [33] DEHKORDI A A, SADIQ A S, MIRJALILI S, et al. Nonlinear-based chaotic Harris hawks optimizer: algorithm and Internet of vehicles application[J]. Applied Soft Computing, 2021, 109: 107574. doi: 10.1016/j.asoc.2021.107574 [34] HUSSAIN K, ZHU W, MOHD SALLEH M N. Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems[J]. IEEE Access, 2019, 7: 147596-147616. doi: 10.1109/ACCESS.2019.2946664 [35] NAIK M K, PANDA R, WUNNAVA A, et al. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J]. Multimedia Tools and Applications, 2021, 80(28): 35543-35583. [36] ARINI F Y, CHIEWCHANWATTANA S, SOOMLEK C, et al. Joint opposite selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems[J]. Expert Systems with Applications, 2022, 188: 116001. doi: 10.1016/j.eswa.2021.116001 [37] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. [38] POLÁKOVÁ R, TVRDÍK J, BUJOK P. Differential evolution with adaptive mechanism of population size according to current population diversity[J]. Swarm and Evolutionary Computation, 2019, 50: 100519. doi: 10.1016/j.swevo.2019.03.014 [39] 张吉祥, 张孟健, 王德光. 增强型白骨顶鸡优化算法及其应用[J]. 小型微型计算机系统, 2024, 45(10): 2401-2410.ZHANG J X, ZHANG M J, WANG D G. Enhanced coot optimization algorithm and its application[J]. Journal of Chinese Computer Systems, 2024, 45(10): 2401-2410. -


下载: