留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信噪比的学习型哈里斯鹰优化算法

张林 沈佳颖 胡传陆 朱东林

张林,沈佳颖,胡传陆,等. 基于信噪比的学习型哈里斯鹰优化算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2360-2373 doi: 10.13700/j.bh.1001-5965.2023.0433
引用本文: 张林,沈佳颖,胡传陆,等. 基于信噪比的学习型哈里斯鹰优化算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2360-2373 doi: 10.13700/j.bh.1001-5965.2023.0433
ZHANG L,SHEN J Y,HU C L,et al. Learning Harris Hawks optimization algorithm with signal-to-noise ratio[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2360-2373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0433
Citation: ZHANG L,SHEN J Y,HU C L,et al. Learning Harris Hawks optimization algorithm with signal-to-noise ratio[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2360-2373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0433

基于信噪比的学习型哈里斯鹰优化算法

doi: 10.13700/j.bh.1001-5965.2023.0433
基金项目: 

国家自然科学基金(62272418, 62002046)

详细信息
    通讯作者:

    E-mail:2078570674@qq.com

  • 中图分类号: TP301.6

Learning Harris Hawks optimization algorithm with signal-to-noise ratio

Funds: 

National Natural Science Foundation of China (62272418, 62002046)

More Information
  • 摘要:

    针对哈里斯鹰优化(HHO)算法存在种群学习性与适应性不足的问题,提出一种基于信噪比的学习型哈里斯鹰优化(SLHHO)算法。该算法通过引入信噪比的概念来判断个体的位置信息,设计了一种协调学习策略,可以更合理地更新种群内个体的位置,进而对逃逸距离重新设计,提升了算法的适应与寻优能力。以12个基准函数为标准,将所提算法与哈里斯鹰算法的变体及其他算法进行性能测试,并在时间复杂度、多样性、探索与开发等评价指标中进行对比分析,结果显示,SLHHO算法具有较强的竞争力与可行性,在压力容器设计问题中,验证了SLHHO算法的实用性。

     

  • 图 1  HHO算法中迭代变化的J

    Figure 1.  Iterative change of J in HHO algorithm

    图 2  SLHHO算法中迭代变化的J

    Figure 2.  Iterative change of J in SLHHO algorithm

    图 3  协调学习原理

    Figure 3.  Coordinated learning schematic

    图 4  各算法平均收敛图

    Figure 4.  Average convergence plot of each algorithm

    图 5  HHO算法与SLHHO算法的探索与开发分布

    Figure 5.  Distribution of exploration and development of HHO algorithm and SLHHO algorithm

    图 6  HHO算法与SLHHO算法的多样性分布

    Figure 6.  Diversity distribution of HHO algorithm and SLHHO algorithm

    表  1  各函数信息

    Table  1.   Information for each function

    函数 区间 最小值
    $ {f}_{1}\left(x\right)=\displaystyle\sum_{i=1}^{n}{x}_{i}^{2} $ [−100,100] 0
    $ {f}_{2}\left(x\right)=\displaystyle\sum_{i=1}^{n}\left|{x}_{i}\right|+\prod _{i=1}^{n}\left|{x}_{i}\right| $ [−10,10] 0
    $ {f}_{3}\left(x\right)=\displaystyle\sum_{i=1}^{n}\left(\displaystyle\sum_{j=1}^{i}{x}_{j}\right)^{2} $ [−100,100] 0
    ${f}_{4}\left(x\right)={\rm{max} }_{i}\left\{\left|{x}_{i}\right|,1 \leqslant i \leqslant n\right\}$ [−100,100] 0
    $ {f}_{5}\left(x\right)=\displaystyle\sum _{i=1}^{n-1}[100{\left({x}_{i+1}-{x}_{i}^{2}\right)}^{2}+{({x}_{i}-1)}^{2}] $ [−30,30] 0
    $ {f}_{6}\left(x\right)=\displaystyle\sum _{i=1}^{n}{\left( {x}_{i}+0.5 \right)}^{2} $ [−100,100] 0
    ${f}_{7}\left(x\right)=\displaystyle\sum _{i=1}^{n}{ix}_{i}^{4}+{\rm{random}}\left[\mathrm{0,1}\right)$ [−1.28,1.28] 0
    $ {f}_{8}\left(x\right)=\displaystyle\sum _{i=1}^{n}-{x}_{i}\mathrm{s}\mathrm{i}\mathrm{n}\left(\sqrt{\left|{x}_{i}\right|}\right) $ [−500,500] −418.9829n
    ${f}_{9}\left(x\right)=\displaystyle\sum _{i=1}^{n}({x}_{i}^{2}-10\mathrm{cos}\left(2 \text{π} {x}_{i}\right)+10)$ [−5.12,5.12] 0
    ${f}_{10}\left(x\right)=-20\mathrm{exp}\left(-0.2\sqrt{\dfrac{1}{n}\sum\limits_{i = 1}^n {x}_{i}^{2} }\right)-\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{1}{n}\sum\limits_{i = 1}^n \mathrm{cos}\left(2 \text{π} {x}_{i}\right)\right)+20+{\rm{e}}$ [−32,32] 0
    $ {f}_{11}\left(x\right)=\dfrac{1}{4\;000}\displaystyle\sum _{i=1}^{n}{x}^{2}-\prod _{i=1}^{n}\mathrm{c}\mathrm{o}\mathrm{s}\left(\dfrac{{x}_{i}}{\sqrt{i}}\right) $ [−600,600] 0
    $\left\{\begin{gathered}{f}_{12}\left(x\right)=\dfrac{ \text{π} }{n}\left[10\mathrm{sin}\left( \text{π} {y}_{1}\right)+\displaystyle\sum _{i=1}^{n-1}{\left({y}_{i}-1\right)}^{2}\left(1+10{\mathrm{sin} }^{2}\left( \text{π} {y}_{i+1}\right)\right)+{\left({y}_{n}-1\right)}^{2}\right]+\displaystyle\sum _{i=1}^{n}u\left({x}_{i},10, \mathrm{100,4}\right) \\{y}_{i}=1+\dfrac{{x}_{i}+1}{4} \\ u\left({x}_{i},a,k,m\right)=\left\{\begin{array}{*{20}{l}}k{\left({x}_{i}-a\right)}^{m} & {x}_{i} > a\\ 0 & -a < {x}_{i} < a\\ k{\left(-{x}_{i}-a\right)}^{m} & {x}_{i} < -a\end{array}\right. \\\end{gathered}\right. $ $ [-\mathrm{50,50}] $ 0
    下载: 导出CSV

    表  2  各算法需设置的内部参数

    Table  2.   Internal parameters to be set for each algorithm

    算法 参数
    ATOA[26] fmin=0.2,fmax=1.0,α=5,$ \mu $=0.499,$ \varepsilon $=2.2204$ \times {10}^{-16} $
    MFPA[30] n=50, P=0.8, γ1=1, γ2=3, λ=1.5, cloning array = [9,8,7,6,5,4,3,2,1,1,1,1,1,1]
    PSOGSA[31] w=rand(1),c1=0.5,c2=1.5,G0=1,α=20
    TACPSO[32] Wmax=0.9,Wmin=0.4,c1=c2=2
    下载: 导出CSV

    表  3  SLHHO算法与其他算法的变体

    Table  3.   SLHHO algorithm and other algorithm variants

    算法 fmin
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 8.60×10−231 4.89×10−100 1.25×10−59 0 0 2.82×10−6 −1.26×104 0 8.88×10−16 0 3.58×10−19
    ATOA[26] 5.59×10−12 1.18×10−39 4.12×10−3 2.79×10−3 2.88×10+1 5.56×10−1 6.13×10−4 −6.67×103 0 3.97×10−10 0 2.53×10−1
    DAOA[27] 4.21×104 0 0 7.57×101 7.36×103 4.61×104 3.49×10−2 −4.03×103 3.57×101 8.88×10−16 9.19×101 1.85×108
    EJAYA[28] 6.17×10−6 1.52×10−3 1.57 1.27×10−1 2.31×101 1.37×10−5 6.34×10−3 −7.30×103 8.05 3.06×10−3 1.48×10−5 3.39×10−7
    IGWO[29] 6.14×10−34 1.85×10−21 3.52×10−5 8.41×10−9 2.51×101 3.93×10−2 6.78×10−4 −7.55×103 5.68 1.15×10−14 0 1.12×10−3
    MFPA[30] 1.27 9.02×10−4 3.84×102 8.28 2.20×101 2.69 7.71×10−2 −1.08×104 2.15×101 2.57 8.57×10−1 7.38×10−1
    PSOGSA[31] 4.88×10−19 3.05×10−9 1.08×103 1.85×101 1.87×101 4.84×10−19 1.89×10−2 −9.76×103 7.86×101 5.80×10−10 7.94×10−3 3.10×10−2
    TACPSO[32] 1.59×10−8 8.43×10−5 2.02 6.52×10−1 2.78 2.33×10−9 5.95×10−3 −1.04×104 2.89×101 1.04×10−4 4.90×10−9 4.05×10−8
    HHO[9] 3.64×10−44 3.02×10−19 3.15×10−32 2.08×10−20 1.14×10−5 4.97×10−9 2.58×10−6 −1.26×104 0 8.88×10−16 0 1.65×10−8
    算法 fave
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 8.85×10−58 5.45×10−82 1.95×10−50 1.66×10−7 6.05×10−12 4.34×10−5 −1.26×104 0 8.88×10−16 0 1.48×10−8
    ATOA[26] 7.56×10−4 7.02×10−4 4.00×102 3.47×10−2 2.92×101 8.05×10−1 5.62×10−3 −5.34×103 0 9.30×10−3 5.17×10−7 9.47×10−1
    DAOA[27] 6.12×104 4.23×101 7.82×104 8.40×101 1.06×104 5.95×104 3.11×101 −2.75×103 1.13×102 1.08×101 5.13×102 4.69×108
    EJAYA[28] 7.52×10−5 6.34×10−3 9.76 4.80×10−1 2.41×10+1 9.62×10−5 1.48×10−2 −6.37×103 5.00×101 1.64 1.70×10−2 1.03×10−1
    IGWO[29] 1.04×10−31 8.36×10−21 4.15×10−3 4.58×10−7 2.55×101 8.72×10−2 2.14×10−3 −5.88×103 6.45×101 1.76×10−14 6.55×10−3 3.80×10−3
    MFPA[30] 1.12×101 3.29×10−2 1.63×103 1.56×101 2.99×101 6.86 1.54×10−1 −8.20×103 5.66×101 1.50×101 1.07 4.24
    PSOGSA[31] 2.02×10−1 1.87×10−2 6.94×103 3.56×101 2.44×101 3.37×102 5.89×10−2 −8.32×103 1.23×102 1.02×101 9.21 4.50
    TACPSO[32] 6.55×10−5 4.87×10−3 4.29×101 2.02 3.33×101 8.81×10−5 1.88×10−2 −9.27×103 5.82×101 7.01×10−1 1.32×10−2 2.07×10−1
    HHO[9] 1.44×10−27 2.18×10−15 3.00×10−17 1.83×10−15 8.10×10−4 1.08×10−5 1.12×10−4 −1.26×104 0 2.79×10−14 0 7.97×10−7
    算法 fstd
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 4.85×10−57 2.22×10−81 9.12×10−50 9.07×10−7 2.63×10−11 4.05×10−5 2.48×10−2 0 1.00×10−31 0 7.42×10−8
    ATOA[26] 9.91×10−4 3.83×10−3 2.18×10+3 1.83×10−2 1.16 1.83×10−1 4.12×10−3 5.50×102 0 1.23×10−2 2.83×10−6 5.89×10−1
    DAOA[27] 6.62×103 1.35×101 3.41×104 3.79 1.37×103 5.42×103 2.55×101 4.73×102 3.60×101 9.62 1.03×102 1.08×108
    EJAYA[28] 9.26×10−5 4.82×10−3 9.07 2.16×10−1 5.34×10−1 7.18×10−5 4.96×10−3 6.31×102 3.22×101 6.13×10−1 3.75×10−2 1.41×10−1
    IGWO[29] 1.84×10−31 7.11×10−21 9.53×10−3 3.44×10−7 1.97×10−1 7.33×10−2 1.22×10−3 6.19×102 4.94×101 3.51×10−15 1.30×10−2 2.34×10−3
    MFPA[30] 1.93×101 8.68×10−2 7.72×102 4.10 7.96 4.40 4.36×10−2 1.12×103 1.81×101 6.80 7.77×10−2 2.31
    PSOGSA[31] 5.74×10−1 5.64×10−2 3.89×103 1.96×101 1.92 1.84×103 1.62×10−2 7.08×102 2.83×101 6.78 2.75×101 3.25
    TACPSO[32] 3.28×10−4 4.94×10−3 4.02×101 1.32 2.33×101 4.33×10−4 7.82×10−3 6.19×102 1.90×101 7.05×10−1 1.44×10−2 2.79×10−1
    HHO[9] 6.83×10−27 4.05×10−15 1.64×10−16 4.48×10−15 1.13×10−3 1.82×10−5 1.45×10−4 1.75×10−1 0 1.31×10−13 0 8.28×10−7
    算法 fcm
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO
    ATOA[26] + + + + + + + + = + + +
    DAOA[27] + + + + + + + + + + + +
    EJAYA[28] + + + + + + + + + + + +
    IGWO[29] + + + + + + + + + + + +
    MFPA[30] + + + + + + + + + + + +
    PSOGSA[31] + + + + + + + + + + + +
    TACPSO[32] + + + + + + + + + + + +
    HHO[9] + + + + + + + + = + = +
    算法 frank
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 1 1 1 1 1 1 1 1 1 1 1 1
    ATOA[26] 6 4 6 4 6 6 4 8 1 4 2 6
    DAOA[27] 9 9 9 9 9 9 9 9 6 8 8 9
    EJAYA[28] 5 6 4 5 3 4 5 6 2 6 5 4
    IGWO[29] 2 2 3 3 5 5 3 7 5 2 3 3
    MFPA[30] 8 8 7 7 7 7 8 5 3 9 6 7
    PSOGSA[31] 7 7 8 8 4 8 7 4 7 7 7 8
    TACPSO[32] 4 5 5 6 8 3 6 3 4 5 4 5
    HHO[9] 3 3 2 2 2 2 2 2 1 3 1 2
    下载: 导出CSV

    表  4  SLHHO算法与HHO算法的变体(维度为30)

    Table  4.   SLHHO algorithm and HHO algorithm variants (dim=30)

    算法 fmin
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 0 4.89×10−100 1.25×10−59 0 0 2.82×10−6 −8.60 0 8.88×10−16 0 3.58×10−19
    NCHHO[33] 3.93×10−246 3.93×10−246 1.75×10−220 1.73×10−115 2.88×101 1.62 4.24×10−6 −6.80 0 8.88×10−16 0 4.56×10−2
    LMHHO[34] 3.07×10−44 3.07×10−44 3.01×10−44 1.31×10−25 7.35×10−9 1.33×10−10 5.00×10−7 −8.60 0 8.88×10−16 0 5.54×10−10
    LHHO[35] 3.14×10−75 3.14×10−75 3.09×10−70 4.16×10−39 2.27×10−6 1.10×10−10 1.23×10−5 −8.60 0 8.88×10−16 0 3.61×10−10
    THHO[10] 1.28×10−246 1.28×10−246 4.75×10−246 2.62×10−127 7.20×10−8 2.95×10−13 1.48×10−6 −8.60 0 8.88×10−16 0 9.20×10−12
    DAHHO[20] 2.03×10−60 2.03×10−60 1.30×10−50 1.03×10−30 2.54×10−6 4.11×10−8 2.37×10−6 −8.60 0 8.88×10−16 0 6.93×10−8
    JOS-HHO[36] 1.50×10−16 1.50×10−16 1.39×10−15 1.11×10−9 8.06×10−5 5.24×10−5 6.60×10−6 −8.60 0 8.77×10−11 0 9.23×10−7
    HHO-1 8.19×10−42 8.19×10−42 2.68×10−30 3.25×10−18 0 1.51×10−8 4.06×10−5 −8.60 0 8.88×10−16 0 3.74×10−10
    HHO-2 7.82×10−123 7.82×10−123 4.38×10−104 1.48×10−59 5.19×10−8 5.48×10−7 2.88×10−6 −8.60 0 8.88×10−16 0 5.90×10−24
    算法 fave
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 8.85×10−58 5.45×10−82 1.95×10−50 1.66×10−7 6.05×10−12 4.34×10−5 −8.60 0 8.88×10−16 0 1.48×10−8
    NCHHO[33] 3.61×10−222 9.70×10−115 3.26×10−202 2.25×10−106 2.88×101 2.36 6.59×10−5 −6.16×101 0 8.88×10−16 0 1.02×10−1
    LMHHO[34] 1.33×10−29 6.45×10−16 7.63×10−28 3.78×10−16 1.70×10−4 5.98×10−7 6.22×10−5 −8.60 0 1.36×10−15 0 2.11×10−7
    LHHO[35] 5.71×10−64 4.29×10−32 2.86×10−54 8.66×10−33 3.85×10−3 2.21×10−6 9.27×10−5 −8.60 0 8.88×10−16 0 1.03×10−6
    THHO[10] 3.67×10−234 9.42×10−117 3.74×10−226 9.85×10−117 1.46×10−3 6.16×10−7 7.59×10−5 −8.60 0 8.88×10−16 0 2.46×10−6
    DAHHO[20] 1.36×10−47 2.04×10−26 2.55×10−35 4.94×10−26 5.28×10−3 4.96×10−5 8.77×10−5 −8.60 0 8.88×10−16 0 3.76×10−6
    JOS-HHO[36] 6.37×10−10 6.25×10−6 2.59×10−7 6.87×10−6 1.51×10−2 1.47×10−3 3.38×10−4 −8.60 4.15×10−10 1.86×10−6 3.34×10−9 7.92×10−5
    HHO-1 5.49×10−24 1.68×10−12 3.18×10−12 6.57×10−13 1.53×10−21 4.75×10−5 2.45×10−4 −8.60 0 1.30×10−12 0 2.63×10−6
    HHO-2 9.46×10−102 2.31×10−55 3.35×10−89 7.67×10−53 1.84×10−4 3.42×10−5 5.91×10−5 −8.60 0 8.88×10−16 0 8.22×10−14
    算法 fstd
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 0 4.85×10−57 2.22×10−81 9.12×10−50 9.07×10−7 2.63×10−11 4.05×10−5 2.48×10−2 0 1.00×10−31 0 7.42×10−8
    NCHHO[33] 0 5.21×10−114 0 1.18×10−105 2.11×10−2 4.51×10−1 7.15×10−5 1.74×10+3 0 1.00×10−31 0 3.90×10−2
    LMHHO[34] 5.41×10−29 1.59×10−15 3.94×10−27 1.78×10−15 4.21×10−4 9.84×10−7 5.70×10−5 3.49×10−2 0 2.59×10−15 0 4.59×10−7
    LHHO[35] 1.68×10−63 1.71×10−31 8.21×10−54 2.98×10−32 7.80×10−3 3.19×10−6 5.07×10−5 1.82×10−2 0 1.00×10−31 0 1.77×10−6
    THHO[10] 0 5.10×10−116 0 5.10×10−116 5.77×10−3 1.92×10−6 8.68×10−5 1.16 0 1.00×10−31 0 7.00×10−6
    DAHHO[20] 7.25×10−47 8.76×10−26 1.09×10−34 1.25×10−25 5.54×10−3 7.85×10−5 1.04×10−4 5.42×10−1 0 1.00×10−31 0 5.35×10−6
    JOS-HHO[36] 1.97×10−9 8.74×10−6 7.26×10−7 1.02×10−5 2.11×10−2 1.77×10−3 2.93×10−4 1.35 8.53×10−10 2.66×10−6 1.45×10−8 7.29×10−5
    HHO-1 2.82×10−23 4.49×10−12 1.22×10−11 1.90×10−12 8.40×10−21 6.01×10−5 2.08×10−4 5.75×10−2 0 5.98×10−12 0 3.55×10−6
    HHO-2 5.18×10−101 8.26×10−55 1.83×10−88 2.63×10−52 1.96×10−4 4.72×10−5 5.16×10−5 3.45×10−2 0 1.00×10−31 0 4.06×10−13
    下载: 导出CSV

    表  5  SLHHO算法与HHO算法的变体(维度为100)

    Table  5.   SLHHO algorithm and HHO algorithm variants (dim=100)

    算法 fmin
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 1.10×10−112 2.48×10−68 2.05×10−105 2.70×10−60 0 5.56×10−8 1.85×10−6 −37.9 0 8.88×10−16 0 1.54×10−20
    NCHHO[33] 1.25×10−239 6.64×10−122 3.12×10−214 1.28×10−116 9.82×101 5.87 2.51×10−6 −36.6 0 8.88×10−16 0 1.15×10−1
    LMHHO[34] 2.28×10−42 5.70×10−23 9.74×10−38 2.61×10−23 2.51×10−7 5.25×10−11 4.95×10−6 −37.9 0 8.88×10−16 0 2.49×10−12
    LHHO[35] 6.78×10−80 9.25×10−38 8.52×10−71 6.23×10−39 1.22×10−5 3.99×10−8 9.72×10−6 −37.9 0 8.88×10−16 0 7.51×10−11
    THHO[10] 7.71×10−254 9.11×10−125 2.86×10−248 1.53×10−126 1.27×10−7 1.66×10−11 3.42×10−7 −37.9 0 8.88×10−16 0 8.16×10−13
    DAHHO[20] 6.55×10−58 2.58×10−32 3.92×10−50 3.62×10−32 0 1.10×10−6 1.41×10−5 −37.9 0 8.88×10−16 0 5.71×10−9
    JOS-HHO[36] 2.34×10−17 2.57×10−8 1.81×10−11 2.17×10−12 7.43×10−3 2.72×10−4 1.72×10−5 −37.9 0 1.46×10−10 1.89×10−15 7.14×10−7
    HHO-1 9.94×10−21 2.09×10−11 2.41×10−20 2.00×10−10 2.11×10−5 4.57×10−5 3.40×10−6 −37.9 0 2.30×10−11 0 6.70×10−7
    HHO-2 9.26×10−77 4.64×10−41 5.63×10−63 6.69×10−39 7.85×10−5 1.53×10−8 1.24×10−7 −37.9 0 8.88×10−16 0 1.32×10−8
    算法 fave
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 5.33×10−99 3.46×10−54 1.73×10−77 2.41×10−50 0 2.01×10−4 4.90×10−5 −37.9 0 8.88×10−16 0 2.89×10−9
    NCHHO[33] 5.23×10−220 2.09×10−115 2.42×10−198 3.53×10−107 9.83×101 7.95 8.19×10−5 −21.2 0 8.88×10−16 0 1.87×10−1
    LMHHO[34] 1.16×10−30 2.17×10−14 1.01×10−25 3.41×10−16 5.20×10−4 1.74×10−6 7.11×10−5 −37.9 0 1.72×10−15 0 1.86×10−8
    LHHO[35] 1.56×10−61 3.36×10−31 6.89×10−48 5.71×10−32 1.21×10−2 1.97×10−5 1.05×10−4 −37.9 0 8.88×10−16 0 8.80×10−7
    THHO[10] 5.65×10−229 2.20×10−117 2.12×10−228 2.10×10−117 2.26×10−3 8.72×10−6 4.88×10−5 −37.9 0 8.88×10−16 0 1.94×10−8
    DAHHO[20] 1.07×10−46 1.42×10−26 1.20×10−37 7.80×10−26 3.32×10−6 2.26×10−3 3.04×10−4 −37.9 0 8.88×10−16 0 9.55×10−6
    JOS-HHO[36] 4.38×10−9 3.01×10−5 6.64×10−5 5.43×10−6 1.76×10−1 8.32×10−3 2.71×10−4 −37.9 7.18×10−9 4.93×10−6 5.14×10−9 5.67×10−5
    HHO-1 2.98×10−10 3.02×10−7 3.06×10−8 5.27×10−7 5.05×10−2 5.54×10−3 1.22×10−4 −37.9 3.16×10−12 3.93×10−8 2.18×10−12 1.50×10−5
    HHO-2 5.80×10−62 2.03×10−34 5.49×10−47 4.17×10−32 1.74×10−3 4.57×10−5 3.27×10−5 −37.9 0 8.88×10−16 0 4.15×10−7
    算法 fstd
    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
    SLHHO 2.88×10−98 1.84×10−53 8.16×10−77 7.89×10−50 0 3.14×10−4 3.69×10−5 2.41×10−1 0 1.00×10−31 0 6.78×10−9
    NCHHO[33] 0 8.89×10−115 0 1.77×10−106 6.68×10−2 1.95 7.59×10−5 8.50×103 0 1.00×10−31 0 6.79×10−2
    LMHHO[34] 4.72×10−30 8.97×10−14 5.52×10−25 1.27×10−15 1.25×10−3 3.20×10−6 6.49×10−5 1.14 0 3.32×10−15 0 3.66×10−8
    LHHO[35] 8.32×10−61 1.75×10−30 3.13×10−47 2.76×10−31 2.22×10−2 3.56×10−5 6.56×10−5 3.48×10−2 0 1.00×10−31 0 1.28×10−6
    THHO[10] 0 1.08×10−116 0 7.70×10−117 8.19×10−3 2.88×10−5 4.07×10−5 3.57 0 1.00×10−31 0 5.66×10−8
    DAHHO[20] 5.66×10−46 4.52×10−26 4.68×10−37 1.99×10−25 1.82×10−5 3.11×10−3 3.33×10−4 3.05 0 1.00×10−31 0 2.15×10−5
    JOS-HHO[36] 1.07×10−8 4.91×10−5 2.04×10−4 1.09×10−5 2.07×10−1 8.01×10−3 2.48×10−4 2.68×101 3.64×10−8 1.20×10−5 1.19×10−8 6.68×10−5
    HHO-1 1.62×10−9 6.43×10−7 6.42×10−8 1.47×10−6 6.57×10−2 4.61×10−3 1.76×10−4 7.88 1.14×10−11 7.55×10−8 6.06×10−12 2.02×10−5
    HHO-2 3.15×10−61 9.48×10−34 2.23×10−46 1.51×10−31 2.60×10−3 6.19×10−5 2.90×10−5 3.59×10−1 0 0 0 5.59×10−7
    下载: 导出CSV

    表  6  不同维度下SLHHO算法与HHO算法的变体排序值

    Table  6.   Variant sorting values of SLHHO algorithm and HHO algorithm in different dimensions

    算法 frank(维度为30) frank(维度为100)
    SLHHO 2.9167 3.1667
    NCHHO[33] 5.1250 5.0417
    LMHHO[34] 4.9583 4.7917
    LHHO[35] 4.8333 4.5833
    THHO[10] 3.3333 2.6667
    DAHHO[20] 5.6667 5.2500
    JOS-HHO[36] 8.3750 8.2917
    HHO-1 6.2083 7.3750
    HHO-2 3.5833 3.8333
    下载: 导出CSV

    表  7  压力容器设计问题优化结果

    Table  7.   Pressure vessel design problem optimization results

    函数 fbest fmean fworst Ts/mm Th/mm R/mm L/mm
    SLHHO 5887.5364 5974.2155 7225.6231 0.7786 0.3853 40.3403 199.7153
    HHO[9] 5981.9440 6909.8281 7654.0635 1.1752 0.5786 59.8934 37.9625
    PSO[1] 5951.9270 6200.6677 7217.0457 0.8153 0.4030 42.2448 174.8309
    GWO[3] 5981.9440 6909.8281 7654.0635 1.1752 0.5786 59.8934 37.9625
    WOA[4] 6103.9794 7578.9269 10436.7044 0.8442 0.4089 42.7487 168.7424
    下载: 导出CSV
  • [1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
    [2] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. doi: 10.1109/MCI.2006.329691
    [3] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [4] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [5] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [6] ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. doi: 10.1016/j.engappai.2019.103300
    [7] XIE L, HAN T, ZHOU H, et al. Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 9210050. doi: 10.1155/2021/9210050
    [8] JIANG X Y, LI S. BAS: beetle antennae search algorithm for optimization problems[EB/OL]. (2017-10-30)[2023-02-01]. http://arxiv.org/abs/1710.10724.
    [9] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028
    [10] JIAO S, CHONG G S, HUANG C C, et al. Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J]. Energy, 2020, 203: 117804. doi: 10.1016/j.energy.2020.117804
    [11] 闫晓斌, 方洋旺, 彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(8): 2636-2645.

    YAN X B, FANG Y W, PENG W S. Multi-objective Harris hawk optimization algorithm based on adaptive Gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2636-2645(in Chinese).
    [12] ELGAMAL Z M, YASIN N B M, TUBISHAT M, et al. An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field[J]. IEEE Access, 2020, 8: 186638-186652. doi: 10.1109/ACCESS.2020.3029728
    [13] 胡春安, 熊昱然. 多策略改进的混沌哈里斯鹰优化算法[J]. 计算机工程与科学, 2023, 45(9): 1648-1660. doi: 10.3969/j.issn.1007-130X.2023.09.014

    HU C A, XIONG Y R. A multi-strategy improved chaotic Harris hawk optimization algorithm[J]. Computer Engineering & Science, 2023, 45(9): 1648-1660(in Chinese). doi: 10.3969/j.issn.1007-130X.2023.09.014
    [14] LI C Y, LI J, CHEN H L, et al. Enhanced Harris hawks optimization with multi-strategy for global optimization tasks[J]. Expert Systems with Applications, 2021, 185: 115499. doi: 10.1016/j.eswa.2021.115499
    [15] 李岩, 钱谦. 基于多种群与协同量子化的哈里斯鹰优化算法[J]. 控制与决策, 2024, 39(7): 2169-2176.

    LI Y, QIAN Q. Harris hawks optimization algorithm based on multigroup and collaborative quantization[J]. Control and Decision, 2024, 39(7): 2169-2176(in Chinese).
    [16] 柴岩, 任生. 双向经验引导与极端个体调控的HHO算法[J]. 计算机科学与探索, 2023, 17(9): 2118-2136. doi: 10.3778/j.issn.1673-9418.2203134

    CHAI Y, REN S. HHO algorithm based on bidirectional experience guidance and extreme individual regulation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2118-2136(in Chinese). doi: 10.3778/j.issn.1673-9418.2203134
    [17] 刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J]. 控制与决策, 2022, 37(10): 2467-2476.

    LIU X L, LIANG T Y. Harris hawk optimization algorithm based on square neighborhood and random array[J]. Control and Decision, 2022, 37(10): 2467-2476(in Chinese).
    [18] 展广涵, 王雨虹, 刘昊. 混合策略改进的哈里斯鹰优化算法及其应用[J]. 传感技术学报, 2022, 35(10): 1394-1403.

    ZHAN G H, WANG Y H, LIU H. Improved Harris hawks optimization algorithm with hybrid strategy and its application[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1394-1403(in Chinese).
    [19] 赵峰, 徐丹华. 基于混沌扰动与柯西变异的HHO算法[J]. 安徽大学学报(自然科学版), 2023, 47(4): 25-34.

    ZHAO F, XU D H. HHO algorithm based on chaotic perturbation and Cauchy mutation[J]. Journal of Anhui University (Natural Science Edition), 2023, 47(4): 25-34(in Chinese).
    [20] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104-116. doi: 10.11992/tis.202108031

    JIA H M, LIU Q X, LIU Y X, et al. Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 104-116(in Chinese). doi: 10.11992/tis.202108031
    [21] YU J H, YANG J H. Adaptive multi-strategy learning particle swarm optimization with evolutionary state estimation[M]//Bio-Inspired Computing: theories and Applications. Berlin: Springer, 2022: 174-186.
    [22] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009, 10: 207-244.
    [23] YUAN T T, DENG W H, TANG J, et al. Signal-to-noise ratio: a robust distance metric for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4810-4819.
    [24] YANG J H, YU J H, HUANG C. Adaptive multistrategy ensemble particle swarm optimization with signal-to-noise ratio distance metric[J]. Information Sciences, 2022, 612: 1066-1094. doi: 10.1016/j.ins.2022.07.165
    [25] 高建瓴, 喻明毫. 混合差分进化与二次插值改进哈里斯鹰算法[J]. 小型微型计算机系统, 2023, 44(7): 1352-1359.

    GAO J L, YU M H. Hybrid differential evolution and quadratic interpolation improved Harris hawks optimization algorithm[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1352-1359(in Chinese).
    [26] DEVAN P A M, HUSSIN F A, IBRAHIM R B, et al. An arithmetic-trigonometric optimization algorithm with application for control of real-time pressure process plant[J]. Sensors, 2022, 22(2): 617. doi: 10.3390/s22020617
    [27] KHODADADI N, SNASEL V, MIRJALILI S. Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints[J]. IEEE Access, 2022, 10: 16188-16208. doi: 10.1109/ACCESS.2022.3146374
    [28] ZHANG Y Y, CHI A N, MIRJALILI S. Enhanced Jaya algorithm: a simple but efficient optimization method for constrained engineering design problems[J]. Knowledge-Based Systems, 2021, 233: 107555. doi: 10.1016/j.knosys.2021.107555
    [29] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917
    [30] NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert Systems with Applications, 2016, 57: 192-203. doi: 10.1016/j.eswa.2016.03.047
    [31] MIRJALILI S, HASHIM S Z M. A new hybrid PSOGSA algorithm for function optimization[C]//Proceedings of the International Conference on Computer and Information Application. Piscataway: IEEE Press, 2010: 374-377.
    [32] TANG Z Y, ZHANG D X. A modified particle swarm optimization with an adaptive acceleration coefficients[C]//Proceedings of the Asia-Pacific Conference on Information Processing. Piscataway: IEEE Press, 2009: 330-332.
    [33] DEHKORDI A A, SADIQ A S, MIRJALILI S, et al. Nonlinear-based chaotic Harris hawks optimizer: algorithm and Internet of vehicles application[J]. Applied Soft Computing, 2021, 109: 107574. doi: 10.1016/j.asoc.2021.107574
    [34] HUSSAIN K, ZHU W, MOHD SALLEH M N. Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems[J]. IEEE Access, 2019, 7: 147596-147616. doi: 10.1109/ACCESS.2019.2946664
    [35] NAIK M K, PANDA R, WUNNAVA A, et al. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J]. Multimedia Tools and Applications, 2021, 80(28): 35543-35583.
    [36] ARINI F Y, CHIEWCHANWATTANA S, SOOMLEK C, et al. Joint opposite selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems[J]. Expert Systems with Applications, 2022, 188: 116001. doi: 10.1016/j.eswa.2021.116001
    [37] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30.
    [38] POLÁKOVÁ R, TVRDÍK J, BUJOK P. Differential evolution with adaptive mechanism of population size according to current population diversity[J]. Swarm and Evolutionary Computation, 2019, 50: 100519. doi: 10.1016/j.swevo.2019.03.014
    [39] 张吉祥, 张孟健, 王德光. 增强型白骨顶鸡优化算法及其应用[J]. 小型微型计算机系统, 2024, 45(10): 2401-2410.

    ZHANG J X, ZHANG M J, WANG D G. Enhanced coot optimization algorithm and its application[J]. Journal of Chinese Computer Systems, 2024, 45(10): 2401-2410.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  50
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 录用日期:  2023-11-27
  • 网络出版日期:  2024-02-04
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答