留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应多态蚁群优化的智能体路径规划

邢娜 邸昊天 尹文杰 韩亚君 周洋

邢娜,邸昊天,尹文杰,等. 基于自适应多态蚁群优化的智能体路径规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2330-2337 doi: 10.13700/j.bh.1001-5965.2023.0432
引用本文: 邢娜,邸昊天,尹文杰,等. 基于自适应多态蚁群优化的智能体路径规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2330-2337 doi: 10.13700/j.bh.1001-5965.2023.0432
XING N,DI H T,YIN W J,et al. Path planning for agents based on adaptive polymorphic ant colony optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2330-2337 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0432
Citation: XING N,DI H T,YIN W J,et al. Path planning for agents based on adaptive polymorphic ant colony optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2330-2337 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0432

基于自适应多态蚁群优化的智能体路径规划

doi: 10.13700/j.bh.1001-5965.2023.0432
基金项目: 

国家重点研发计划(2020YFC0811004);北京市教育委员会科研计划项目(KM202310009001); 北方工业大学科研启动基金(110051360023XN224-9)

详细信息
    通讯作者:

    E-mail:yin__wenjie@163.com

  • 中图分类号: TP301.6;TP391.9

Path planning for agents based on adaptive polymorphic ant colony optimization

Funds: 

National Key Research and Development Program of China (2020YFC0811004); Scientific Research Project of Beijing Educational Committee (KM202310009001); North China University of Technology Research Initiation Fund (110051360023XN224-9)

More Information
  • 摘要:

    在智能体路径规划中,蚁群算法是较为流行的路径求解策略,且得到了广泛的应用。然而,传统蚁群算法存在局部最优和多余拐点问题。基于此,提出自适应多态蚁群优化算法,通过多群体划分和协作机制,极大的提高了搜索和收敛速度,有助于增强全局搜索能力,避免陷入局部最优解。改进的信息素更新策略和路径选择记录表构造进一步提高路径规划的准确性。通过3次B样条平滑曲线对路径进行处理,有效减少拐点,实现路径的平滑化。经过MATLAB和机器人操作系统(ROS)-Gazebo仿真验证,结果表明:所提算法在复杂环境下具有良好的可行性。综上所述,所提算法为智能体全局搜索带来了显著的优化和改进。

     

  • 图 1  生成路径对比

    Figure 1.  Comparison of path generation

    图 2  轨迹拐点与B-Spline平滑对比

    Figure 2.  Comparison of trajectory inflection points and B-Spline smoothing

    图 3  栅格地图下环境建模

    Figure 3.  Environment modeling under grid map

    图 4  传统蚁群算法蚂蚁路线与改进算法对比

    Figure 4.  Comparison between traditional ant colony algorithm ant route and improved algorithm

    图 5  复杂特殊场景下本文算法轨迹

    Figure 5.  Proposed algorithm trajectories in complex special scenarios

    图 6  基于改进A*的蚁群算法生成的轨迹

    Figure 6.  Trajectory generated by an ant colony algorithm based on improved A*

    图 7  本文算法生成的轨迹

    Figure 7.  Trajectory generated by the proposed algorithm

    图 8  路径长度与迭代次数对比

    Figure 8.  Path length versus number of iterations

    图 9  ROS-Gazebo仿真平台架构

    Figure 9.  ROS-Gazebo simulation platform architecture

    图 10  蚂蚁位置初始化流程

    Figure 10.  Ant position initialization flow

    图 11  路径生成流程

    Figure 11.  Path generation flow

    图 12  路径平滑流程

    Figure 12.  Path smoothing flow

    图 13  智能体初始位置

    Figure 13.  Initial position of the agent

    图 14  智能体避障过程

    Figure 14.  Obstacle avoidance process of the agent

    图 15  智能体目标点位置

    Figure 15.  Position of the target point of the agent

    表  1  实验参数设置表

    Table  1.   Experimental Parameter Setting Table

    参数数值
    起点381
    终点18
    蚂蚁个数$m$50
    最大迭代次数$N$100
    信息素因子$\alpha $1
    启发函数因子$\beta $5
    信息素挥发因子$\rho $0.6
    信息素增加强度系数$Q$1
    折扣系数$ (1 - \lambda ) $0.7
    下载: 导出CSV
  • [1] 王梓强, 胡晓光, 李晓筱, 等. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19-29.

    WANG Z Q, HU X G, LI X X, et al. Overview of global path planning algorithms for mobile robots[J]. Computer Science, 2021, 48(10): 19-29(in Chinese).
    [2] ZHANG L, ZHANG Y J, LI Y F. Mobile robot path planning based on improved localized particle swarm optimization[J]. IEEE Sensors Journal, 2021, 21(5): 6962-6972. doi: 10.1109/JSEN.2020.3039275
    [3] 霍凤财, 迟金, 黄梓健, 等. 移动机器人路径规划算法综述[J]. 吉林大学学报(信息科学版), 2018, 36(6): 639-647.

    HUO F C, CHI J, HUANG Z J, et al. Review of path planning for mobile robots[J]. Journal of Jilin University (Information Science Edition), 2018, 36(6): 639-647(in Chinese).
    [4] SANG H Q, YOU Y S, SUN X J, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709. doi: 10.1016/j.oceaneng.2021.108709
    [5] ZANG X N, JIANG L, DING B, et al. A hybrid ant colony system algorithm for solving the ring star problem[J]. Applied Intelligence, 2021, 51(6): 3789-3800. doi: 10.1007/s10489-020-02072-w
    [6] YI G H, FENG Z L, MEI T C, et al. Multi-AGVs path planning based on improved ant colony algorithm[J]. The Journal of Supercomputing, 2019, 75(9): 5898-5913. doi: 10.1007/s11227-019-02884-9
    [7] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用, 2020, 56(8): 10-19.

    ZHANG S C, PU J X, SI Y N, et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer Engineering and Applications, 2020, 56(8): 10-19(in Chinese).
    [8] SONG J, HAO C, SU J C. Path planning for unmanned surface vehicle based on predictive artificial potential field[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 172988142091846.
    [9] ZHOU Y L, HUANG N N. Airport AGV path optimization model based on ant colony algorithm to optimize Dijkstra algorithm in urban systems[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100716. doi: 10.1016/j.suscom.2022.100716
    [10] LIU G Q, LI T J, PENG Y Q, et al. The ant algorithm for solving robot path planning problem[C]//Proceedings of the 3rd International Conference on Information Technology and Applications. Piscataway: IEEE Press, 2005: 25-27.
    [11] ZHANG Y, CAO Y, HAN Z. Path planning of vehicle based on improved ant colony algorithm[C]//Proceedings of the International Conference on Modelling, Identification and Control. Piscataway: IEEE Press, 2012: 797-801.
    [12] YUAN Z R, YU H Y, HUANG M H. Improved ant colony optimization algorithm for intelligent vehicle path planning[C]//Proceedings of the International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway: IEEE Press, 2017: 1-4.
    [13] BRAND M, MASUDA M, WEHNER N, et al. Ant colony optimization algorithm for robot path planning[C]//Proceedings of the International Conference on Computer Design and Applications. Piscataway: IEEE Press, 2010: V3-436-V3-440.
    [14] AKKA K, KHABER F. Mobile robot path planning using an improved ant colony optimization[J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 1729881418774673.
    [15] WU L, HUANG X D, CUI J G, et al. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot[J]. Expert Systems with Applications, 2023, 215: 119410. doi: 10.1016/j.eswa.2022.119410
    [16] 甄然, 张春悦, 矫阳, 等. 基于自适应多态融合蚁群算法的无人机航迹规划[J]. 河北科技大学学报, 2019, 40(6): 526-532.

    ZHEN R, ZHANG C Y, JIAO Y, et al. Research on UAV route planning based on adaptive polymorphic ant colony algorithm[J]. Journal of Hebei University of Science and Technology, 2019, 40(6): 526-532(in Chinese).
    [17] MIAO C W, CHEN G Z, YAN C L, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & Industrial Engineering, 2021, 156: 107230.
    [18] JIAO Z Q, MA K, RONG Y L, et al. A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs[J]. Journal of Computational Science, 2018, 25: 50-57. doi: 10.1016/j.jocs.2018.02.004
    [19] LAN X, LV X F, LIU W, et al. Research on robot global path planning based on improved A-star ant colony algorithm[C]//Proceedings of the 5th Advanced Information Technology, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2021: 613-617.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  101
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-09-05
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答