留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPC的飞机牵引车轨迹跟踪

张军 黄明辉 王玥琳 阳星 叶敏 贾永乐

张军,黄明辉,王玥琳,等. 基于MPC的飞机牵引车轨迹跟踪[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2916-2926 doi: 10.13700/j.bh.1001-5965.2023.0431
引用本文: 张军,黄明辉,王玥琳,等. 基于MPC的飞机牵引车轨迹跟踪[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2916-2926 doi: 10.13700/j.bh.1001-5965.2023.0431
ZHANG J,HUANG M H,WANG Y L,et al. Trajectory tracking for aircraft tug based on MPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2916-2926 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0431
Citation: ZHANG J,HUANG M H,WANG Y L,et al. Trajectory tracking for aircraft tug based on MPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2916-2926 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0431

基于MPC的飞机牵引车轨迹跟踪

doi: 10.13700/j.bh.1001-5965.2023.0431
基金项目: 

陕西省2022年自然科学基础研究计划(2022JM-249);陕西省重点研发计划(2023-YBSF-104);长安大学本科实践类课程建设项目(2025-05)

详细信息
    通讯作者:

    E-mail:zhangjun@chd.edu.cn

  • 中图分类号: V351.34;TP23

Trajectory tracking for aircraft tug based on MPC

Funds: 

Natural Science Basic Research Plan in Shaanxi Province of 2022 (2022JM-249); The Key R & D Project in Shaanxi Province (2023-YBSF-104); Undergraduate Practical Course Development Project of Chang’an University (2025-05)

More Information
  • 摘要:

    为能满足物流机场短时间、高频次的快捷飞机牵引需求,提出了基于无人驾驶技术的快速牵引方法。采用“理论建模-算法设计-算例测试和仿真优化-样机实验”的技术路线和方法,以10 t飞机牵引车为对象,构建牵引车的运动学模型,确定牵引车的约束条件和控制量,通过增加防碰撞处理、最小转弯半径和路径平滑的方式改进A*算法,生成牵引车运动轨迹;设计模型预测控制(MPC)的轨迹跟踪控制器,构建MATLAB/Simulink和ADAMS联合仿真模型,通过轨迹跟踪仿真实验优化MPC的控制参数,并在改造的电传动飞机牵引车样机上开展轨迹跟踪实验。结果表明:改进的A*算法满足飞机牵引车工作路径规划和最小转弯半径要求,联合仿真方法优化了MPC控制器,在样机上实现了较好的跟踪精度,弯道和直线跟踪误差的标准差分别为0.362 m和0.128 m,实现了飞机牵引车的无人驾驶功能,为智慧物流机场的无人牵引飞机奠定技术基础。

     

  • 图 1  牵引车运动学模型

    Figure 1.  Motion model of tug

    图 2  防碰撞安全范围

    Figure 2.  Anti-collision safety range

    图 3  MPC控制器组成

    Figure 3.  MPC controller composition

    图 4  电传动无杆飞机牵引车动力学模型

    Figure 4.  Dynamics model of electric drive aircraft tug

    图 5  牵引车-飞机系统的机电联合仿真模型

    Figure 5.  Co-simulation model of tug-aircraft system

    图 6  仿真场景轨迹规划结果

    Figure 6.  Compared simulated path planning results

    图 7  联合仿真实验结果

    Figure 7.  Results of joint simulation experiments

    图 8  弯道下牵引车与飞机的连接角度变化

    Figure 8.  The connection angle change

    图 9  样机的上位机程序

    Figure 9.  Overall structure of upper computer software

    图 10  无人驾驶飞机牵引车

    Figure 10.  Autonomous aircraft tug

    图 11  实验场地

    Figure 11.  Experimental site

    图 12  轨迹跟踪实验结果

    Figure 12.  Field result of path tracking

    表  1  路径平滑仿真结果

    Table  1.   Path smoothing simulation results

    场景 方法 方差/m2 标准差/m 平滑性
    仿真场景1 最小二乘法 1.851 1.360 一般
    梯度下降法 0.015 0.126
    仿真场景2 最小二乘法 0.026 0.161 一般
    梯度下降法 0.012 0.111
    下载: 导出CSV

    表  2  不同控制参数下的MPC控制效果对比

    Table  2.   Compared results at different MPC control parameters

    参数组合 $ {N_{\rm c}} $ $ {N_{\rm p}} $ 标准差/m 仿真时间/s
    1 30 60 0.267 6.95
    2 30 50 0.247 6.39
    3 30 40 0.231 6.23
    4 30 30 0.218 5.92
    5 20 20 0.204 5.07
    6 10 10 0.182 3.73
    7 5 10 0.183 2.83
    8 5 5 0.157 2.78
    下载: 导出CSV

    表  3  联合仿真轨迹结果

    Table  3.   Joint simulation trajectory results

    场景 方差/m2 标准差/m
    仿真场景1 0.021 0.146
    仿真场景2 0.016 0.128
    下载: 导出CSV

    表  4  轨迹跟踪误差分析

    Table  4.   Track tracking error analysis

    场景 方差/m2 标准差/m
    实验场景1 0.131 0.362
    实验场景2 0.016 0.128
    下载: 导出CSV
  • [1] 李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[J]. 国外电子测量技术, 2019, 38(6): 72-79.

    LI Y D, MA T L, CHEN C B, et al. Review of path planning algorithm for unmanned vehicles[J]. Foreign Electronic Measurement Technology, 2019, 38(6): 72-79(in Chinese).
    [2] 刘军, 冯硕, 任建华. 移动机器人路径动态规划有向D*算法[J]. 浙江大学学报(工学版), 2020, 54(2): 291-300.

    LIU J, FENG S, REN J H. Directed D* algorithm for dynamic path planning of mobile robots[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(2): 291-300(in Chinese).
    [3] 陈秋莲, 蒋环宇, 郑以君. 机器人路径规划的快速扩展随机树算法综述[J]. 计算机工程与应用, 2019, 55(16): 10-17. doi: 10.3778/j.issn.1002-8331.1905-0061

    CHEN Q L, JIANG H Y, ZHENG Y J. Summary of rapidly-exploring random tree algorithm in robot path planning[J]. Computer Engineering and Applications, 2019, 55(16): 10-17(in Chinese). doi: 10.3778/j.issn.1002-8331.1905-0061
    [4] NOREEN I, KHAN A, HABIB Z. Optimal path planning using RRT* based approaches: a survey and future directions[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(11): 97-107.
    [5] KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 1478-1483.
    [6] 孙家玮, 余明晖, 杨大鹏, 等. 基于CL-RRT与MPC的舰载机牵引系统路径规划[J]. 系统工程与电子技术, 2024, 46(5): 1745-1755.

    SUN J W, YU M H, YANG D P, et al. Path planning of carrier based aircraft traction system based on CL-RRT and MPC[J]. Systems Engineering and Electronic Technology, 2024, 46(5): 1745-1755(in Chinese).
    [7] 张智, 林圣琳, 邱兵, 等. 舰载机牵引系统甲板调运避碰路径规划[J]. 系统工程与电子技术, 2014, 36(8): 1551-1557. doi: 10.3969/j.issn.1001-506X.2014.08.17

    ZHANG Z, LIN S L, QIU B, et al. Collision avoidance path planning of carrier aircraft traction system indispatching on deck[J]. Systems Engineering and Electronics, 2014, 36(8): 1551-1557(in Chinese). doi: 10.3969/j.issn.1001-506X.2014.08.17
    [8] MENG X L, WANG N J, LIU Q H. Aircraft parking trajectory planning in semistructured environment based on kinodynamic safety RRT[J]. Mathematical Problems in Engineering, 2021, 2021: 3872248.
    [9] LIU J, DONG X Z, WANG J Y, et al. A novel EPT autonomous motion control framework for an off-axle hitching tractor-trailer system with drawbar[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(2): 376-385.
    [10] LIU J, HAN W, PENG H J, et al. Trajectory planning and tracking control for towed carrier aircraft system[J]. Aerospace Science and Technology, 2019, 84: 830-838.
    [11] 张震男. 牵引系统路径规划与路径跟踪控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    ZHANG Z N. Research on path planning and path tracking control strategy of traction system[D]. Harbin: Harbin Engineering University, 2021(in Chinese).
    [12] WALLACE R, STENTZ A, THORPE C, et al. First results in robot road-following[C]//Proceedings of the 9th International Joint Conference on Artificial Intelligence. New York: ACM, 1985: 1089-1095.
    [13] 黄海洋, 张建, 王宇, 等. 基于多点预瞄最优控制的智能车辆路径跟踪[J]. 汽车技术, 2018(10): 6-9.

    HUANG H Y, ZHANG J, WANG Y, et al. Path traking for intelligent vehicle based on the optimal multipoint preview control[J]. Automobile Technology, 2018(10): 6-9(in Chinese).
    [14] CHENG S, LI L, CHEN X, et al. Model-predictive-control-based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8698-8707. doi: 10.1109/TIE.2020.3009585
    [15] 张攀, 柳阳, 刘新杰, 等. 改进的智能飞机牵引车路径导航纯追踪算法[J]. 计算机工程, 2019, 45(5): 267-271.

    ZHANG P, LIU Y, LIU X J, et al. Improved pure pursuit algorithm for intelligent aircraft tractor path navigation[J]. Computer Engineering, 2019, 45(5): 267-271(in Chinese).
    [16] YU M H, GONG X, FAN G W, et al. Trajectory planning and tracking for carrier aircraft-tractor system based on autonomous and cooperative movement[J]. Mathematical Problems in Engineering, 2020, 2020: 6531984.
    [17] WERNER R, KORMANN G, MUELLER S. Systematic model based path tracking control of actively steered implements in simulation and experiment[J]. IFAC Proceedings Volumes, 2013, 46(18): 85-90.
    [18] BIN Y, SHIM T, FENG N L, et al. Path tracking control for backing-up tractor-trailer system via model predictive control[C]//Proceedings of the 24th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2012: 198-203.
    [19] BACKMAN J, OKSANEN T, VISALA A. Navigation system for agricultural machines: nonlinear model predictive path tracking[J]. Computers and Electronics in Agriculture, 2012, 82: 32-43. doi: 10.1016/j.compag.2011.12.009
    [20] 张军, 文川, 阳星, 等. 基于ADRC的电传动飞机牵引车控制系统设计[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(5): 1017-1026.

    ZHANG J, WEN C, YANG X, et al. Design of an electric driveaircraft tug control system based on ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1017-1026(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  15
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-04-09
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答