留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进TCN-Elman神经网络的电离层杂波抑制方法

刘强 尚尚 乔铁柱 祝健 石依山

刘强,尚尚,乔铁柱,等. 基于改进TCN-Elman神经网络的电离层杂波抑制方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3203-3211 doi: 10.13700/j.bh.1001-5965.2023.0429
引用本文: 刘强,尚尚,乔铁柱,等. 基于改进TCN-Elman神经网络的电离层杂波抑制方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3203-3211 doi: 10.13700/j.bh.1001-5965.2023.0429
LIU Q,SHANG S,QIAO T Z,et al. Ionospheric clutter suppression method based on improved TCN-Elman neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3203-3211 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0429
Citation: LIU Q,SHANG S,QIAO T Z,et al. Ionospheric clutter suppression method based on improved TCN-Elman neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3203-3211 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0429

基于改进TCN-Elman神经网络的电离层杂波抑制方法

doi: 10.13700/j.bh.1001-5965.2023.0429
基金项目: 

国家自然科学基金(61801196);江苏省研究生科研与实践创新计划资助项目(SJCX23_2138)

详细信息
    通讯作者:

    E-mail:shangshang@just.edu.cn

  • 中图分类号: TN957.54

Ionospheric clutter suppression method based on improved TCN-Elman neural network

Funds: 

National Natural Science Foundation of China (61801196); Jiangsu Postgraduate Research and Practice Innovation Program (SJCX23_2138)

More Information
  • 摘要:

    高频地波雷达因其卓越的海面目标探测能力,被世界各国应用于海上工程领域,而提升其目标探测能力的关键要素之一在于回波信号中电离层杂波的抑制,针对这一现象,提出一种基于瓶颈膨胀卷积模块改进时序卷积(ITCN)-Elman神经网络结合混合注意力机制的电离层杂波预测抑制模型(Mixatt-ITCN-Elman)。对电离层杂波时间序列进行相空间重构和乱序归一化,利用ITCN提取高维相空间内的空间特征,依据自注意力机制突出其中关键的空间特征,将空间特征与原时间序列组合输入Elman神经网络,结合注意力机制突显序列的空时特征,通过空时特征与Elman神经网络输出序列组合输出,得到最终预测结果。所提模型与Elman、TCN、Att-CNN-Elman和TCN-Elman模型相对比,具有较好的预测性能和稳定性,对于电离层杂波的抑制具有较高应用价值。

     

  • 图 1  电离层杂波主成分分析图

    Figure 1.  Principal component analysis of ionospheric clutter

    图 2  电离层杂波抑制流程

    Figure 2.  Flow chart of ionospheric clutter suppression

    图 3  Mixatt-ITCN-Elman模型

    Figure 3.  Mixatt-ITCN-Elman model

    图 4  因果卷积结构

    Figure 4.  Causal convolution structure

    图 5  膨胀卷积结构

    Figure 5.  Expansion convolution structure

    图 6  注意力模型

    Figure 6.  Attention model

    图 7  自注意力模型

    Figure 7.  Self-attention model

    图 8  Elman模块

    Figure 8.  Elman module

    图 9  各模型抑制结果对比

    Figure 9.  Comparison of suppression results among different models

    图 10  实测数据电离层杂波抑制前后群距离-多普勒谱对比

    Figure 10.  Comparison of group distance-Doppler spectra before and after ionospheric clutter suppression of measured data

    表  1  模型训练误差指标对比

    Table  1.   Comparison of model training error metrics

    模型 R M S/% $ \rho $
    Elman 0.0530 0.0426 7.203 8 0.968 2
    TCN 0.0305 0.0203 3.895 8 0.993 2
    Att-CNN-Elman 0.0208 0.0157 2.543 2 0.997 2
    TCN-Elman 0.0201 0.0138 2.155 1 0.997 4
    Mixatt-ITCN-Elman 0.0100 0.0076 1.145 5 0.999 2
    下载: 导出CSV

    表  2  模型训练时间和预测精度对比

    Table  2.   Comparison of model training time and prediction accuracy

    模型训练时间/s预测精度/%
    Elman6.2890.56
    TCN14.7496.88
    Att-CNN-Elman15.9698.55
    TCN-Elman20.4298.64
    Mixatt-ITCN-Elman18.7099.66
    下载: 导出CSV

    表  3  模型不同距离单元信杂比对比

    Table  3.   Comparison of signal-to-clutter ratio for different distance units of the model

    模型 信杂比/dB
    66距离单元 86距离单元 106距离单元
    原始 −2.96 1.14 9.27
    Elman 5.82 10.22 17.65
    TCN 11.30 19.21 25.19
    Att-CNN-Elman 12.53 17.15 24.72
    TCN-Elman 12.58 19.70 24.83
    Mixatt-ITCN-Elman 15.55 25.81 30.51
    下载: 导出CSV
  • [1] COOK T M, TERRILL E J, GARCIA-MORENO C, et al. Observations of ionospheric clutter at near equatorial high frequency radar stations[J]. Remote Sensing, 2023, 15(3): 603. doi: 10.3390/rs15030603
    [2] YANG X G, WANG M J, HUANG W M, et al. Experimental observation and analysis of ionosphere echoes in the mid-latitude region of China using high-frequency surface wave radar and ionosonde[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4599-4606. doi: 10.1109/JSTARS.2020.3014666
    [3] CHEN Z Z, XIE F, ZHAO C, et al. An orthogonal projection algorithm to suppress interference in high-frequency surface wave radar[J]. Remote Sensing, 2018, 10(3): 403. doi: 10.3390/rs10030403
    [4] WANG Z Q, LI Y J, SHI J N, et al. Spread sea clutter suppression in HF hybrid sky-surface wave radars based on general parameterized time-frequency analysis[J]. International Journal of Antennas and Propagation, 2020, 2020: 1-12.
    [5] JANGAL F, SAILLANT S, HELIER M. Ionospheric clutter mitigation using one-dimensional or two-dimensional wavelet processing[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 112-121.
    [6] DING M K, WEI Y S, YU L, et al. Adaptive suppression of main-lobe spread Doppler clutter with high directivity for HFSSWR using oblique projection[J]. Electronics Letters, 2019, 55(23): 1245-1247. doi: 10.1049/el.2019.1583
    [7] LI J M, YANG Q, ZHANG X. Space-time adaptive processing algorithm based on hyper beamforming for ionospheric clutter suppression in small-array high-frequency surface wave radar[J]. IET Radar, Sonar & Navigation, 2023, 17(4): 545-555.
    [8] LI Y J, WANG Z Q, XU L, et al. Spread sea clutter suppression via prior knowledge-based space time adaptive processing in high frequency hybrid sky-surface wave radar[J]. IET Radar, Sonar & Navigation, 2023, 17(5): 830-844.
    [9] YANG Y L, MAO X P, HOU Y G, et al. A two-step method for ionospheric clutter mitigation for HFSWR with two-dimensional dual-polarized received array[J]. IEEE Access, 2020, 8: 105903-105913. doi: 10.1109/ACCESS.2020.2999463
    [10] GENG H, LIANG Y, YANG F, et al. Joint estimation of target state and ionospheric height bias in over-the-horizon radar target tracking[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1153-1167.
    [11] CHEN S Y, HUANG W M, GILL E W. A vertical reflection ionospheric clutter model for HF radar used in coastal remote sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1689-1693. doi: 10.1109/LAWP.2015.2419174
    [12] CHEN S Y, GILL E W, HUANG W M. A high-frequency surface wave radar ionospheric clutter model for mixed-path propagation with the second-order sea scattering[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5373-5381. doi: 10.1109/TAP.2016.2618538
    [13] 位寅生, 周建宇, 许荣庆. 基于杂波聚类与贪婪策略的电离层杂波智能处理方法[J]. 雷达学报, 2020, 9(4): 589-607. doi: 10.12000/JR20086

    WEI Y S, ZHOU J Y, XU R Q. Intelligent suppression method for ionospheric clutter based on clustering and greedy strategy[J]. Journal of Radars, 2020, 9(4): 589-607(in Chinese). doi: 10.12000/JR20086
    [14] GENG H, LIANG Y, CHENG Y H. Target state and Markovian jump ionospheric height bias estimation for OTHR tracking systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(7): 2599-2611. doi: 10.1109/TSMC.2018.2822819
    [15] LYU Z, YU C, LIU A . Chaotic dynamics of ionospheric clutter from high frequency surface wave radar[C]//IET International Radar Conference. London: IET, 2020: 1640-1646.
    [16] CHENG W, WANG Y, PENG Z, et al. High-efficiency chaotic time series prediction based on time convolution neural network[J]. Chaos, Solitons & Fractals, 2021, 152: 111304.
    [17] HUANG W J, LI Y T, HUANG Y. Prediction of chaotic time series using hybrid neural network and attention mechanism[J]. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [18] WEI L, CAO H, MA Z H. Parameter prediction of marine seawater cooling system based on chaos-Elman combined model[J]. IEEE Access, 2022, 10: 77272-77283. doi: 10.1109/ACCESS.2022.3183987
    [19] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317. doi: 10.1016/0167-2789(85)90011-9
    [20] KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1-2): 48-60. doi: 10.1016/S0167-2789(98)00240-1
    [21] HAYKIN S. Radar clutter attractor: implications for physics, signal processing and control[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(4): 177-188. doi: 10.1049/ip-rsn:19990403
    [22] 陈永, 陈锦, 陶美风. 多尺度特征和注意力融合的生成对抗壁画修复[J]. 北京麻豆精品秘 国产传媒学报, 2021, 49(2): 254-264.

    CHEN Y, CHEN J, TAO M F. Mural inpainting with generative adversarial networks based on multi-scale feature and attention fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 254-264(in Chinese).
    [23] ZHU W Q, WANG Z Y, WANG X C, et al. A Dual self-attention mechanism for vehicle re-Identification[J]. Pattern Recognition, 2023, 137: 109258. doi: 10.1016/j.patcog.2022.109258
    [24] KIM D, KIM Y. Understanding effects of architecture design to invariance and complexity in deep neural networks[J]. IEEE Access, 2021, 9: 9670-9681. doi: 10.1109/ACCESS.2021.3049841
    [25] XING W Y, BAI Y L, DING L, et al. Application of a hybrid model based on GA–ELMAN neural networks and VMD double processing in water level prediction[J]. Journal of Hydroinformatics, 2022, 24(4): 818-837. doi: 10.2166/hydro.2022.016
    [26] SUN Y Z, ZHANG J H, YU Z J, et al. WOA (whale optimization algorithm) optimizes Elman neural network model to predict porosity value in well logging curve[J]. Energies, 2022, 15(12): 4456. doi: 10.3390/en15124456
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  75
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-30
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-13
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答