留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于资源供需差与情境理解度的情境意识模型

王一行 刘双 完颜笑如 冯传宴 周孙夏 钱春颖

王一行,刘双,完颜笑如,等. 基于资源供需差与情境理解度的情境意识模型[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3108-3116 doi: 10.13700/j.bh.1001-5965.2023.0428
引用本文: 王一行,刘双,完颜笑如,等. 基于资源供需差与情境理解度的情境意识模型[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3108-3116 doi: 10.13700/j.bh.1001-5965.2023.0428
WANG Y H,LIU S,WANYAN X R,et al. Situation awareness model based on resource supply-demand difference and understanding[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3108-3116 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0428
Citation: WANG Y H,LIU S,WANYAN X R,et al. Situation awareness model based on resource supply-demand difference and understanding[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3108-3116 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0428

基于资源供需差与情境理解度的情境意识模型

doi: 10.13700/j.bh.1001-5965.2023.0428
基金项目: 

国家自然科学基金委员会与中国民用航空局联合基金(U1733118);航空科学基金(201813300002);国家自然科学基金(71301005)

详细信息
    通讯作者:

    E-mail:wanyanxiaoru@cq5520.com

  • 中图分类号: V7;R857.1

Situation awareness model based on resource supply-demand difference and understanding

Funds: 

Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China (U1733118); Aeronautical Science Foundation of China (201813300002); National Natural Science Foundation of China (71301005)

More Information
  • 摘要:

    为进一步满足航空器人机界面的研制需求,开展航空器任务和显控界面设计紧密结合特点下作业人员情境意识(SA)水平的理论预测,提出一种基于资源供需差与情境理解度的情境意识量化分析模型。该模型以经典且广泛适用的情境意识评估技术(SART)量表对情境意识的定义方式为基础,将人员情境意识表征为资源供需差与情境理解度的加和,并引入多维度人机界面显示格式对情境理解度进行量化,结合任务网络分析与多资源理论对各任务单元的资源供需差进行衡量。为对模型的有效性进行验证,采用30名被试开展不同情境评估难度下的5边飞行模拟实验,通过调整改变仿真气象条件、仪表显示模式、飞行导航地图显示模式以实现对情境评估难度的调控,并结合主观量表、飞行绩效及眼动指标对作业人员在不同情境评估难度下的情境意识水平进行测评。数据分析结果表明,所提情境意识理论模型的计算结果与实验主观(SART量表、机组意识评定量表(CARS)、美国国家航空航天局-任务负荷指数量表(NASA-TLX))、客观(操纵绩效、注视熵、扫视次数)测量结果均呈现出良好的相关性,对模型的效度进行了初步验证。所提情境意识理论模型可结合航空器任务操控流程设计和显控界面设计特征对人员情境意识分析预测提供一定的理论依据和技术方法。

     

  • 图 1  情境意识模型理论框架

    Figure 1.  Situation awareness model theoretical diagram

    图 2  飞行模拟仿真平台

    Figure 2.  Flight simulation platform

    图 3  5边模拟飞行任务轨迹示意图

    Figure 3.  Trajectory of the simulated flight task in airfield traffic pattern

    图 4  起飞、巡航、着陆阶段不同情境评估难度条件下相关性分析结果

    Figure 4.  Results of correlation analysis under different situation difficulties in take-off, cruise, and landing stages

    表  1  不同情境评估难度条件下的任务情境设计

    Table  1.   Task situation design under different situation difficulties

    情境评
    估难度
    气象条件 仪表
    显示模式
    地图显示模式 界面
    示意图
    VFR 正常显示 正常模式
    MVFR 混合显示 信息杂乱
    IFR CAT1 备份显示 信息杂乱
    突显性低
    下载: 导出CSV

    表  2  不同任务阶段的操纵特点

    Table  2.   Manipulation characteristics of different task stages

    任务阶段 操纵特点
    起飞 保持10°~20°俯仰角稳定爬升高度,航向保持不变
    巡航(直飞) 保持1000 ft高度平稳飞行,航向保持不变,俯仰角和滚转角保持0°
    巡航(转弯) 保持10°~20°滚转角进行转弯,高度保持不变,俯仰角保持0°
    着陆 保持0°~10°俯仰角稳定降低高度,稳定调整航向和滚转角以对准跑道
    下载: 导出CSV

    表  3  不同任务阶段的操纵绩效评价指标

    Table  3.   Manipulation performance evaluation indicators for different task stages

    任务阶段 操纵绩效评价指标
    起飞 $ {\sigma }_{\mathrm{p}} $、$ {\overline{x}}_{\mathrm{t}} $、$ {c}_{\mathrm{v}\mathrm{R}} $
    巡航(直飞) $ {\sigma }_{\mathrm{p}} $、$ {\sigma }_{\mathrm{y}} $、$ {\overline{x}}_{\mathrm{R}} $、$ {\overline{x}}_{\mathrm{t}} $
    巡航(转弯) $ {\sigma }_{\mathrm{p}} $、$ {c}_{\mathrm{v}\mathrm{r}} $、$ {c}_{\mathrm{v}\mathrm{t}} $
    着陆 $ {\sigma }_{\mathrm{p}} $、$ {\sigma }_{\mathrm{r}} $、$ {\sigma }_{\mathrm{y}} $、$ {\overline{x}}_{\mathrm{R}} $、$ {\overline{x}}_{\mathrm{t}} $
    下载: 导出CSV

    表  4  界面显示格式评估维度对情境意识的支撑程度

    Table  4.   Support for situation awareness by interface display format evaluation dimension

    人机界面设计特征 程度 情境理解度
    界面显示的杂乱度 0
    −1
    −2
    界面显示的信息布局优劣程度 −0.75
    −1.5
    −2
    界面显示的突显性 0
    1.2
    1.5
    下载: 导出CSV

    表  5  情境意识模型的理论计算结果

    Table  5.   Theoretical calculation results of situation awareness model

    情境评估难度 情景意识水平
    起飞 巡航 着陆 完整任务
    1.1429 1.3846 1.2500 1.2857
    0.8836 1.1254 0.9907 1.0265
    0.6254 0.8803 0.6685 0.7561
    下载: 导出CSV

    表  6  完整任务阶段实验测量结果

    Table  6.   Measurement result of the complete task phase

    测量方法与指标 平均值(标准差) F p
    低情境评估难度 中情境评估难度 高情境评估难度
    CARS 13.23(1.38) 12.53(1.53) 10.20(1.79) 30.53 <0.001
    SART 7.27(2.03) 5.43(2.08) 2.23(2.37) 41.45 <0.001
    NASA-TLX 40.81(10.27) 47.80(11.42) 66.50(11.89) 42.11 <0.001
    注视熵 1.33(0.23) 1.53(0.21) 1.62(0.18) 15.52 <0.001
    扫视次数 297.86(92.24) 260.97(82.55) 224.58(76.49) 5.71 0.005
    操纵绩效 3.08(0.76) 3.34(0.53) 4.14(0.65) 21.75 <0.001
    下载: 导出CSV
  • [1] ENDSLEY M R. Situation awareness global assessment technique[C]//Proceedings of the IEEE 1988 National Aerospace and Electronics Conference. Piscataway: IEEE Press, 2002: 789-795.
    [2] 靳慧斌, 刘亚威, 朱国蕾. 基于眼动和绩效分析的管制员情境意识测量[J]. 中国安全科学学报, 2017, 27(7): 65-70.

    JIN H B, LIU Y W, ZHU G L. Measuring situation awareness of tower controllers based on eye movement and performance analysis[J]. China Safety Science Journal, 2017, 27(7): 65-70(in Chinese).
    [3] NGUYEN T, LIM C P, NGUYEN N D, et al. A review of situation awareness assessment approaches in aviation environments[J]. IEEE Systems Journal, 2019, 13(3): 3590-3603. doi: 10.1109/JSYST.2019.2918283
    [4] 冯传宴, 完颜笑如, 陈浩, 等. 基于多资源负荷理论的情境意识模型与应用[J]. 北京麻豆精品秘 国产传媒学报, 2018, 44(7): 1438-1446.

    FENG C Y, WANYAN X R, CHEN H, et al. Situation awareness model based on multi-resource load theory and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1438-1446(in Chinese).
    [5] ZHOU F, YANG X J, DE WINTER J C F. Using eye-tracking data to predict situation awareness in real time during takeover transitions in conditionally automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2284-2295. doi: 10.1109/TITS.2021.3069776
    [6] YEO L G, SUN H Q, LIU Y S, et al. Mobile EEG-based situation awareness recognition for air traffic controllers[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Press, 2017: 3030-3035.
    [7] KIM J, MYUNG R. A predictive model of situation awareness with ACT-R[J]. Journal of the Ergonomics Society of Korea, 2016, 35(4): 225-235. doi: 10.5143/JESK.2016.35.4.225
    [8] GORE B F, HOOEY B L , HAAN N, et al. A validated set of MIDAS V5 task network model scenarios to evaluate nextgen closely spaced parallel operations concepts: HCSL-13-03[R]. Moffett Field: NASA Ames Research Center, 2013: 1-35.
    [9] WICKENS C D, GOH J, HELLEBERG J, et al. Attentional models of multitask pilot performance using advanced display technology[J]. Human Factors, 2003, 45(3): 360-380. doi: 10.1518/hfes.45.3.360.27250
    [10] MEYER D R. Effects of automation on aircrew workload and situation awareness in tactical airlift missions[D]. Fort Belvoir: Air Force Institute of Technology, 2015.
    [11] TAYLOR R M. Situational awareness rating technique (SART): the development of a tool for aircrew systems design[M]//TAYLOR R M. Situational awareness. London: Routledge, 2017: 111-128.
    [12] LEE Y J, JUNG K T, LEE H C. Use of gaze entropy to evaluate situation awareness in emergency accident situations of nuclear power plant[J]. Nuclear Engineering and Technology, 2022, 54(4): 1261-1270. doi: 10.1016/j.net.2021.10.022
    [13] SHEPHERD A. HTA as a framework for task analysis[J]. Ergonomics, 1998, 41(11): 1537-1552. doi: 10.1080/001401398186063
    [14] FRIEDRICH M, BIERMANN M, GONTAR P, et al. The influence of task load on situation awareness and control strategy in the ATC tower environment[J]. Cognition, Technology & Work, 2018, 20(2): 205-217.
    [15] PARASURAMAN R, SHERIDAN T B, WICKENS C D. Situation awareness, mental workload, and trust in automation: viable, empirically supported cognitive engineering constructs[J]. Journal of Cognitive Engineering and Decision Making, 2008, 2(2): 140-160. doi: 10.1518/155534308X284417
    [16] 田书婕, 王波, 王丽, 等. 基于时间-多资源占用的工作负荷评估模型[J]. 北京麻豆精品秘 国产传媒学报, 2017, 43(12): 2497-2504.

    TIAN S J, WANG B, WANG L, et al. Workload evaluation model based on occupation of time and multi-resource[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2497-2504(in Chinese).
    [17] MCCRACKEN J H, ALDRICH T B. Analyses of selected LHX mission functions: implications for operator workload and system automation goals: ASI 479-024[R]. Fort Rucker: ASI, 1984.
    [18] GRIER R, WICKENS C, KABER D, et al. The red-line of workload: theory, research, and design[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2008, 52(18): 1204-1208. doi: 10.1177/154193120805201811
    [19] KIM S K, SUH S M, JANG G S, et al. Empirical research on an ecological interface design for improving situation awareness of operators in an advanced control room[J]. Nuclear Engineering and Design, 2012, 253: 226-237. doi: 10.1016/j.nucengdes.2012.08.026
    [20] 肖旭, 完颜笑如, 庄达民. 显示界面多维视觉编码综合评价模型[J]. 北京麻豆精品秘 国产传媒学报, 2015, 41(6): 1012-1018.

    XIAO X, WANYAN X R, ZHUANG D M. Comprehensive evaluation model of multidimensional visual coding on display interface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1012-1018(in Chinese).
    [21] BLUNDELL J, SCOTT S, HARRIS D, et al. With flying colours: pilot performance with colour-coded head-up flight symbology[J]. Displays, 2020, 61: 101932. doi: 10.1016/j.displa.2019.101932
    [22] LIN C J, LIN P H, CHEN H J, et al. Effects of controller-pilot communication medium, flight phase and the role in the cockpit on pilots’ workload and situation awareness[J]. Safety Science, 2012, 50(9): 1722-1731. doi: 10.1016/j.ssci.2012.04.007
    [23] 许卫宝. 飞行员着舰的多层次模糊综合评价方法[J]. 中国舰船研究, 2013, 8(2): 17-21. doi: 10.3969/j.issn.1673-3185.2013.02.004

    XU W B. A comprehensive evaluation method for carrier landing based on fuzzy analytical hierarchy process[J]. Chinese Journal of Ship Research, 2013, 8(2): 17-21(in Chinese). doi: 10.3969/j.issn.1673-3185.2013.02.004
    [24] 靳慧斌, 吕川, 朱国蕾. 塔台管制中情境意识与视觉搜索策略关系研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(1): 108-112.

    JIN H B, LV C, ZHU G L. Relation between visual search strategy and situation awareness in tower control[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(1): 108-112(in Chinese).
    [25] STANTON N A, LI W C, HARRIS D. Editorial: ergonomics and human factors in aviation[J]. Ergonomics, 2019, 62(2): 131-137. doi: 10.1080/00140139.2019.1564589
    [26] KOEN V D M, HENK V D, ROLF Z. Eye movements as an indicator of situation awareness in a flight simulator experiment[J]. The International Journal of Aviation Psychology, 2012, 22(1): 78-95. doi: 10.1080/10508414.2012.635129
    [27] FENG C Y, WANYAN X R, LIU S, et al. An approach to situation awareness (SA) assessment in flight simulation: SA dynamic circulation (SADC) model[J]. Human Factors and Ergonomics in Manufacturing & Service Industries, 2021, 31(5): 559-569.
    [28] 冯传宴, 完颜笑如, 刘双, 等. 负荷条件下注意力分配策略对情境意识的影响[J]. 航空学报, 2020, 41(3): 123307.

    FENG C Y, WANYAN X R, LIU S, et al. Influence of different attention allocation strategies under workloads on situation awareness[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123307(in Chinese).
    [29] WICKENS C D, MCCARLEY J S, ALEXANDER A L, et al. Attention-situation awareness (A-SA) model of pilot error: AHFD-04-15/NASA-04-5[R]. Mountain View: NASA Ames Research Center, 2005.
    [30] LIU S, WANYAN X R, ZHUANG D M. Modeling the situation awareness by the analysis of cognitive process[J]. Bio-Medical Materials and Engineering, 2014, 24(6): 2311-2318. doi: 10.3233/BME-141044
    [31] JIANG S Q, CHEN W J, KANG Y T. Correlation evaluation of pilots’ situation awareness in bridge simulations via eye-tracking technology[J]. Computational Intelligence and Neuroscience, 2021, 2021: 7122437. doi: 10.1155/2021/7122437
    [32] DE WINTER J C F, EISMA Y B, CABRALL C D D, et al. Situation awareness based on eye movements in relation to the task environment[J]. Cognition, Technology & Work, 2019, 21(1): 99-111.
    [33] IVETA Š, PECHO P, AŽALTOVIČ V, et al. Number of saccades and fixation duration as indicators of pilot workload[J]. Transportation Research Procedia, 2020, 51: 67-74. doi: 10.1016/j.trpro.2020.11.009
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  69
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-30
  • 录用日期:  2023-10-05
  • 网络出版日期:  2023-11-06
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答