-
摘要:
基于某运输机带冰风洞试验数据和结冰升力特性分析,得出结冰对小迎角(AOA)范围内升力系数影响较小的结论。设计一种基于该先验知识增强的升力系数多项式在线主成分估计方法,克服由于激励不足和回归量之间共线性导致的数据矩阵病态问题。利用结冰后升力曲线斜率变化量与最大升力系数呈现的良好线性关系估计了最大升力系数和失速迎角。与现有方法相比,所设计方法具有成熟度高、实时性好、不依赖主动激励的显著优点。仿真结果表明:所设计方法估计精度可以满足迎角保护要求,具有良好的工程应用前景。
Abstract:Based on the wind tunnel test data of a transport aircraft with ice and the analysis of icing lift characteristics, it is concluded that icing has little effect on the lift coefficient in the small angle of attack (AOA) range. An online principal component estimation algorithm of lift coefficient polynomial based on prior knowledge enhancement was designed to overcome the ill-conditioned problem of data matrix due to insufficient excitation and collinearity between regression variables. The maximum lift coefficient and stall AOA were estimated by using the good linear relationship between the slope variation of the lift curve and the maximum lift coefficient after icing. Compared with traditional methods, the designed method has significant advantages such as high maturity, good real-time performance, and no need for active excitation. Simulation results show that the estimation accuracy can meet the requirements of AOA protection, and the designed method has good engineering application prospects.
-
表 1 飞机结冰强度等级划分
Table 1. Classification of aircraft icing intensity
结冰等级 单位时间结冰厚度/(mm·min−1) 微量结冰 <0.6 轻度结冰 0.6~1.0 中等结冰 1.1~2.0 严重结冰 >2.0 表 2 不同稳态迎角下的参数估计值
Table 2. Parameter estimates at different steady-state angles of attack
稳态迎角/(°) $ {\left. {C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ ${\left. {\bar C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ ${\left. {\Delta C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ $\Delta {\left. {\bar C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ $ {\hat \alpha _{\mathrm{m}}} $/(°) 7 0.0665 0.9210 0.0336 1.2043 12.414 9 0.0785 1.0872 0.0216 0.7741 14.069 11 0.0793 1.0983 0.0208 0.7455 14.180 13.2 0.0736 1.0193 0.0265 0.9498 13.394 -
[1] MELODY J W, HILLBRAND T, BAŞAR T, et al. H∞ parameter identification for inflight detection of aircraft icing: the time-varying case[J]. Control Engineering Practice, 2001, 9(12): 1327-1335. doi: 10.1016/S0967-0661(01)00081-8 [2] BRAGG M, PERKINS W, SARTER N, et al. An interdisciplinary approach to inflight aircraft icing safety[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. [3] HOSSAIN K, SHARMA V, BRAGG M, et al. Envelope protection and control adaptation in icing encounters[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. [4] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination[C]//Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. [5] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京: 南京麻豆精品秘 国产传媒, 2006.ZHANG Z Y. Study on icing flight dynamics and envelope protection control law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). [6] 应思斌. 飞机容冰飞行控制系统设计的理论与方法研究[D]. 上海: 复旦大学, 2010.YING S B. Research on theory and method of aircraft ice-holding flight control system design[D]. Shanghai: Fudan University, 2010(in Chinese). [7] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10): 2273-2275.YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10): 2273-2275(in Chinese). [8] 周莉, 徐浩军, 杨哲, 等. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8): 1217-1221.ZHOU L, XU H J, YANG Z, et al. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1217-1221(in Chinese). [9] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3): 865-872.QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 865-872(in Chinese). [10] 郑无计, 李颖晖, 屈亮, 等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报, 2017, 38(2): 520724.ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520724(in Chinese). [11] 张锡金, 宋文滨, 张淼. 型号空气动力学设计[M]. 上海: 上海交通大学出版社, 2020: 23-25.ZHANG X J, SONG W B, ZHANG M. Aircraft aerodynamic design[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 23-25(in Chinese). [12] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京麻豆精品秘 国产传媒出版社, 2016: 11-12.LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016: 11-12(in Chinese). [13] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[M]. 北京: 中国民用航空局, 2011.Civil Aviation Administration of China. Airworthiness standards for transport category airplanes: CCAR-25-R4[M]. Beijing: Civil Aviation Administration of China, 2011. [14] 张强. 民用飞机临界冰型确定策略浅析[J]. 民用飞机设计与研究, 2019(1): 53-58.ZHANG Q. Determination method of critical ice shapes for large civil aircraft[J]. Civil Aircraft Design & Research, 2019(1): 53-58(in Chinese). [15] 张培田, 韩意新, 张喆. 飞机系统辨识理论与实践[M]. 北京: 航空工业出版社, 2019: 97-98.ZHANG P T, HAN Y X, ZHANG Z. Theory and practice of aircraft system identification[M]. Beijing: Aviation Industry Press, 2019: 97-98(in Chinese). [16] VLADISLAV K, EUGENE A M. Aircraft system identification: theory and practice[M]. Reston: American Institute of Aeronautics and Astronautics, 2006: 138-139. [17] 林建忠. 回归分析与线性统计模型[M]. 2版. 上海: 上海交通大学出版社, 2022: 134-137.LIN J Z. Regression analysis and linear statistical model[M]. 2nd ed. Shanghai: Shanghai Jiao Tong University Press, 2022: 134-137(in Chinese). [18] MASSY W F. Principle components regression in exploratory statistical research[J]. Journal of the American Statistical Association, 1965, 60(309): 234-256. [19] CALAFIORE G C, GHAOUI L E. 最优化模型[M]. 北京: 机械工业出版社, 2022: 162-165.CALAFIORE G C, GHAOUI L E. Optimization models[M]. Beijing: China Machine Press, 2022: 162-165(in Chinese). [20] 袁志鹏, 薛源, 巩磊, 等. 大型飞机迎角保护控制律设计及试飞技术研究[J]. 飞行力学, 2020, 38(1): 90-94.YUAN Z P, XUE Y, GONG L, et al. Research on design and flight test technologies of large aircraft angle of attack protection control law[J]. Flight Dynamics, 2020, 38(1): 90-94(in Chinese). -


下载: