留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种结冰飞机失速迎角实时估计方法

江飞鸿 刘贞报 薛源 孔满昭 赵甜

江飞鸿,刘贞报,薛源,等. 一种结冰飞机失速迎角实时估计方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2947-2954 doi: 10.13700/j.bh.1001-5965.2023.0420
引用本文: 江飞鸿,刘贞报,薛源,等. 一种结冰飞机失速迎角实时估计方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2947-2954 doi: 10.13700/j.bh.1001-5965.2023.0420
JIANG F H,LIU Z B,XUE Y,et al. A real-time estimation method for stall angle of attack of icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2947-2954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0420
Citation: JIANG F H,LIU Z B,XUE Y,et al. A real-time estimation method for stall angle of attack of icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2947-2954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0420

一种结冰飞机失速迎角实时估计方法

doi: 10.13700/j.bh.1001-5965.2023.0420
详细信息
    通讯作者:

    E-mail:370812450@qq.com

  • 中图分类号: V212.11

A real-time estimation method for stall angle of attack of icing aircraft

More Information
  • 摘要:

    基于某运输机带冰风洞试验数据和结冰升力特性分析,得出结冰对小迎角(AOA)范围内升力系数影响较小的结论。设计一种基于该先验知识增强的升力系数多项式在线主成分估计方法,克服由于激励不足和回归量之间共线性导致的数据矩阵病态问题。利用结冰后升力曲线斜率变化量与最大升力系数呈现的良好线性关系估计了最大升力系数和失速迎角。与现有方法相比,所设计方法具有成熟度高、实时性好、不依赖主动激励的显著优点。仿真结果表明:所设计方法估计精度可以满足迎角保护要求,具有良好的工程应用前景。

     

  • 图 1  不同结冰构型升力系数

    Figure 1.  Lift coefficients of different icing configurations

    图 2  构型0升力系数多项式拟合曲线

    Figure 2.  Polynominal fitting curves of lift coefficient of configuration 0

    图 3  构型3升力系数多项式拟合曲线

    Figure 3.  Polynominal fitting curves of lift coefficient of configuration 3

    图 4  构型4升力系数多项式拟合曲线

    Figure 4.  Polynominal fitting curves of lift coefficient of configuration 4

    图 5  $ \Delta C_y^\alpha $与$ {C_{y\max }} $的线性关系

    Figure 5.  Linear relationship between $ \Delta C_y^\alpha $and$ {C_{y\max }} $

    图 6  多项式各参数相对变化曲线

    Figure 6.  Relative change curves of polynominal parameters

    图 7  随机试验中失速迎角估计值

    Figure 7.  Estimated stall angle of attack in a randomized trial

    图 8  水平飞行迎角保护仿真曲线

    Figure 8.  Simulation curves of angle of attack protection for horizontal flight

    图 9  30°坡度转弯迎角保护仿真曲线

    Figure 9.  Simulation curves of angle of attack protection for 30° bank turn

    表  1  飞机结冰强度等级划分

    Table  1.   Classification of aircraft icing intensity

    结冰等级 单位时间结冰厚度/(mm·min−1)
    微量结冰 <0.6
    轻度结冰 0.6~1.0
    中等结冰 1.1~2.0
    严重结冰 >2.0
    下载: 导出CSV

    表  2  不同稳态迎角下的参数估计值

    Table  2.   Parameter estimates at different steady-state angles of attack

    稳态迎角/(°) $ {\left. {C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ ${\left. {\bar C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ ${\left. {\Delta C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ $\Delta {\left. {\bar C_y^\alpha } \right|_{\alpha = {9^ \circ }}} $ $ {\hat \alpha _{\mathrm{m}}} $/(°)
    7 0.0665 0.9210 0.0336 1.2043 12.414
    9 0.0785 1.0872 0.0216 0.7741 14.069
    11 0.0793 1.0983 0.0208 0.7455 14.180
    13.2 0.0736 1.0193 0.0265 0.9498 13.394
    下载: 导出CSV
  • [1] MELODY J W, HILLBRAND T, BAŞAR T, et al. H∞ parameter identification for inflight detection of aircraft icing: the time-varying case[J]. Control Engineering Practice, 2001, 9(12): 1327-1335. doi: 10.1016/S0967-0661(01)00081-8
    [2] BRAGG M, PERKINS W, SARTER N, et al. An interdisciplinary approach to inflight aircraft icing safety[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
    [3] HOSSAIN K, SHARMA V, BRAGG M, et al. Envelope protection and control adaptation in icing encounters[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
    [4] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination[C]//Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
    [5] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京: 南京麻豆精品秘 国产传媒, 2006.

    ZHANG Z Y. Study on icing flight dynamics and envelope protection control law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
    [6] 应思斌. 飞机容冰飞行控制系统设计的理论与方法研究[D]. 上海: 复旦大学, 2010.

    YING S B. Research on theory and method of aircraft ice-holding flight control system design[D]. Shanghai: Fudan University, 2010(in Chinese).
    [7] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10): 2273-2275.

    YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10): 2273-2275(in Chinese).
    [8] 周莉, 徐浩军, 杨哲, 等. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8): 1217-1221.

    ZHOU L, XU H J, YANG Z, et al. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1217-1221(in Chinese).
    [9] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3): 865-872.

    QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 865-872(in Chinese).
    [10] 郑无计, 李颖晖, 屈亮, 等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报, 2017, 38(2): 520724.

    ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520724(in Chinese).
    [11] 张锡金, 宋文滨, 张淼. 型号空气动力学设计[M]. 上海: 上海交通大学出版社, 2020: 23-25.

    ZHANG X J, SONG W B, ZHANG M. Aircraft aerodynamic design[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 23-25(in Chinese).
    [12] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京麻豆精品秘 国产传媒出版社, 2016: 11-12.

    LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016: 11-12(in Chinese).
    [13] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[M]. 北京: 中国民用航空局, 2011.

    Civil Aviation Administration of China. Airworthiness standards for transport category airplanes: CCAR-25-R4[M]. Beijing: Civil Aviation Administration of China, 2011.
    [14] 张强. 民用飞机临界冰型确定策略浅析[J]. 民用飞机设计与研究, 2019(1): 53-58.

    ZHANG Q. Determination method of critical ice shapes for large civil aircraft[J]. Civil Aircraft Design & Research, 2019(1): 53-58(in Chinese).
    [15] 张培田, 韩意新, 张喆. 飞机系统辨识理论与实践[M]. 北京: 航空工业出版社, 2019: 97-98.

    ZHANG P T, HAN Y X, ZHANG Z. Theory and practice of aircraft system identification[M]. Beijing: Aviation Industry Press, 2019: 97-98(in Chinese).
    [16] VLADISLAV K, EUGENE A M. Aircraft system identification: theory and practice[M]. Reston: American Institute of Aeronautics and Astronautics, 2006: 138-139.
    [17] 林建忠. 回归分析与线性统计模型[M]. 2版. 上海: 上海交通大学出版社, 2022: 134-137.

    LIN J Z. Regression analysis and linear statistical model[M]. 2nd ed. Shanghai: Shanghai Jiao Tong University Press, 2022: 134-137(in Chinese).
    [18] MASSY W F. Principle components regression in exploratory statistical research[J]. Journal of the American Statistical Association, 1965, 60(309): 234-256.
    [19] CALAFIORE G C, GHAOUI L E. 最优化模型[M]. 北京: 机械工业出版社, 2022: 162-165.

    CALAFIORE G C, GHAOUI L E. Optimization models[M]. Beijing: China Machine Press, 2022: 162-165(in Chinese).
    [20] 袁志鹏, 薛源, 巩磊, 等. 大型飞机迎角保护控制律设计及试飞技术研究[J]. 飞行力学, 2020, 38(1): 90-94.

    YUAN Z P, XUE Y, GONG L, et al. Research on design and flight test technologies of large aircraft angle of attack protection control law[J]. Flight Dynamics, 2020, 38(1): 90-94(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  77
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-25
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答