留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于U-Net++和特征融合的塑料齿轮复杂黑点检测方法

方一鸣 石照耀 宋辉旭

方一鸣,石照耀,宋辉旭. 基于U-Net++和特征融合的塑料齿轮复杂黑点检测方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3020-3029 doi: 10.13700/j.bh.1001-5965.2023.0418
引用本文: 方一鸣,石照耀,宋辉旭. 基于U-Net++和特征融合的塑料齿轮复杂黑点检测方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):3020-3029 doi: 10.13700/j.bh.1001-5965.2023.0418
FANG Y M,SHI Z Y,SONG H X. Detection method for complex dark spots on plastic gears based on U-Net++ and feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3020-3029 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0418
Citation: FANG Y M,SHI Z Y,SONG H X. Detection method for complex dark spots on plastic gears based on U-Net++ and feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3020-3029 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0418

基于U-Net++和特征融合的塑料齿轮复杂黑点检测方法

doi: 10.13700/j.bh.1001-5965.2023.0418
基金项目: 

国家自然科学基金重大科研仪器研制项目(52227809); 精密测试技术及仪器国家重点实验室(天津大学)(PILAB2105);中国科协青年人才托举工程(2021QNRC001)

详细信息
    通讯作者:

    E-mail:shizhaoyao@bjut.edu.cn

  • 中图分类号: TP249

Detection method for complex dark spots on plastic gears based on U-Net++ and feature fusion

Funds: 

National Natural Science Foundation Major Scientific Research Instrument Development Project (52227809); State Key Laboratory of Precision Measuring Technology and Instruments (Tianjin University) (PILAB2105); Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)

More Information
  • 摘要:

    传统的缺陷检测算法在检测塑料齿轮表面复杂黑点时效果不佳,主要问题是对齿轮边缘上黑点的大小和位置判别不准确、对浅色黑点的漏检率高、易将点浇口误判为黑点。为此,提出一种基于U-Net++和特征融合的塑料齿轮复杂黑点检测方法。所提方法通过U-Net++预测黑点区域;根据梯度特征对黑点区域进行修正;结合多特征融合分析给出最终判定结果,提高了对复杂黑点检测的准确性和稳定性。测试结果表明:所提方法表征检测结果准确性的Pc值达到了98.93%,表征分割结果准确性的交并比平均值达到了0.864,相比传统的缺陷检测算法和未做修正的深度学习算法,交并比的平均值分别提高了0.478和0.309。

     

  • 图 1  塑料齿轮黑点缺陷的4种类型(按缺陷成因分类)

    Figure 1.  Four types of dark spot defects of plastic gears (classified by the cause of defect)

    图 2  传统缺陷检测算法面临的3个难题

    Figure 2.  Three problems faced by traditional defect detection algorithms

    图 3  用于塑料齿轮黑点缺陷检测的U-Net++结构

    Figure 3.  U-Net++ structure for dark spot defect detection in plastic gears

    图 4  Z-Score标准化

    Figure 4.  Z-Score standardization

    图 5  基于局部图像梯度特征的区域生长法

    Figure 5.  Region growth method based on local image gradient features

    图 6  多特征融合置信度分析

    Figure 6.  Confidence analysis of multi-feature fusion

    图 7  多特征置信度融合分析案例

    Figure 7.  Analysis case of multi-feature confidence fusion

    图 8  塑料齿轮黑点检测实验设备

    Figure 8.  Experimental equipment for dark spot detection in plastic gears

    图 9  本文方法与传统算法在3个问题上检测效果对比

    Figure 9.  Comparison of detection effects between the proposed method and traditional algorithms on three problems

    图 10  训练过程中的Diceloss衰减曲线

    Figure 10.  Decay curves of Diceloss during training

    图 11  修正前后黑点分割效果的对比

    Figure 11.  Comparison of dark spot segmentation effects before and after correction

    图 12  修正前后的IoU的平均值对比

    Figure 12.  Comparison of the average values of IoU before and after correction

    图 13  完整算法的检测效率

    Figure 13.  Detection efficiency of complete algorithm

    表  1  3种模型比较

    Table  1.   Comparison of three models

    模型 编码器 图像数量 平均处理时间/s IoU平均值 Pc/%
    FPN resnet18 201 0.192 0.45 97.87
    resnet34 0.200 0.48 97.99
    efficientnet-b1 0.204 0.44 97.53
    U-Net resnet18 201 0.196 0.48 98.02
    resnet34 0.202 0.51 98.52
    efficientnet-b1 0.227 0.42 97.81
    U-Net++ resnet18 201 0.263 0.52 98.32
    resnet34 0.298 0.60 98.93
    efficientnet-b1 0.246 0.54 98.58
    下载: 导出CSV

    表  2  不同检测方法对塑料齿轮黑点缺陷数据集的检测效果对比

    Table  2.   Comparison of detection effects among different methods on dataset of plastic gears with dark spot defects

    方法 IoU平均值 Pc值/%
    传统缺陷检测算法
    (基于局部极值的分水岭算法)
    0.386 55.60
    U-Net++(未做修正) 0.555 98.93
    本文方法 0.864 98.93
    下载: 导出CSV
  • [1] 石照耀, 方一鸣, 王笑一. 齿轮视觉检测仪器与技术研究进展[J]. 激光与光电子学进展, 2022, 59(14): 1415006.

    SHI Z Y, FANG Y M, WANG X Y. Research progress in gear machine vision inspection instrument and technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415006(in Chinese).
    [2] 欧阳志喜, 石照耀. 塑料齿轮设计与制造[M]. 北京: 化学工业出版社, 2011: 271-276.

    OUYANG Z X, SHI Z Y. Design and manufacturing of plastic gears[M]. Beijing: Chemical Industry Press, 2011: 271-276(in Chinese) .
    [3] HAN K T M, UYYANONVARA B. A survey of blob detection algorithms for biomedical images[C]//Proceedings of the 7th International Conference of Information and Communication Technology for Embedded Systems. Piscataway: IEEE Press, 2016: 57-60.
    [4] 杨亚, 陶红艳, 余成波. SURF与灰度差分在小模数塑料齿轮缺陷检测中的研究与应用[J]. 机械传动, 2018, 42(5): 156-160.

    YANG Y, TAO H Y, YU C B. Research and application of SURF and gray difference in detection of small modulus plastic gear defect[J]. Journal of Mechanical Transmission, 2018, 42(5): 156-160(in Chinese).
    [5] 李江波, 彭彦昆, 黄文倩, 等. 桃子表面缺陷分水岭分割方法研究[J]. 农业机械学报, 2014, 45(8): 288-293. doi: 10.6041/j.issn.1000-1298.2014.08.046

    LI J B, PENG Y K, HUANG W Q, et al. Watershed segmentation method for segmenting defects on peach fruit surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 288-293(in Chinese). doi: 10.6041/j.issn.1000-1298.2014.08.046
    [6] 韦玉科, 陈玉, 田洪金. 基于计算机视觉的焊点缺陷检测系统的设计[J]. 测控技术, 2015, 34(1): 138-141. doi: 10.3969/j.issn.1000-8829.2015.01.038

    WEI Y K, CHEN Y, TIAN H J. Design of solder joint defect detection based on machine vision[J]. Measurement & Control Technology, 2015, 34(1): 138-141(in Chinese). doi: 10.3969/j.issn.1000-8829.2015.01.038
    [7] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.

    TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034(in Chinese).
    [8] SU Y T, YAN P. A defect detection method of gear end-face based on modified YOLO-V3[C]//Proceedings of the 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE Press, 2020: 283-288.
    [9] 张广世, 葛广英, 朱荣华, 等. 基于改进YOLOv3网络的齿轮缺陷检测[J]. 激光与光电子学进展, 2020, 57(12): 121009.

    ZHANG G S, GE G Y, ZHU R H, et al. Gear defect detection based on the improved YOLOv3 network[J]. Laser & Optoelectronics Progress, 2020, 57(12): 121009(in Chinese).
    [10] 刘悦, 黄新波. 基于YOLOv4和改进分水岭算法的绝缘子爆裂检测定位研究[J]. 电网与清洁能源, 2021, 37(7): 51-57. doi: 10.3969/j.issn.1674-3814.2021.07.007

    LIU Y, HUANG X B. Research on insulator burst fault identification based on YOLOv4 and improved watershed algorithm[J]. Power System and Clean Energy, 2021, 37(7): 51-57(in Chinese). doi: 10.3969/j.issn.1674-3814.2021.07.007
    [11] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [12] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. U-Net++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin: Springer, 2018: 3-11.
    [13] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 640-651.
    [14] VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: a line segment detector[J]. Image Processing on Line, 2012, 2: 35-55. doi: 10.5201/ipol.2012.gjmr-lsd
    [15] ZHOU J, HUANG X H, PENG G. Recognition of airplanes using multi-feature fusion[J]. Journal of Huazhong University of Science and Technology, 2009, 37(1): 38-41.
    [16] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [17] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121-2159.
    [18] RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2023-02-01]. http://arxiv.org/abs/1609.04747v2.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  59
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-10-25
  • 网络出版日期:  2023-11-01
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答