留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPC的随机风场下航空器纵向自主间隔控制

汤新民 陆晓娜

汤新民,陆晓娜. 基于MPC的随机风场下航空器纵向自主间隔控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2860-2871 doi: 10.13700/j.bh.1001-5965.2023.0414
引用本文: 汤新民,陆晓娜. 基于MPC的随机风场下航空器纵向自主间隔控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(9):2860-2871 doi: 10.13700/j.bh.1001-5965.2023.0414
TANG X M,LU X N. Longitudinal autonomous separation control of aircraft in random wind fields based on MPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2860-2871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0414
Citation: TANG X M,LU X N. Longitudinal autonomous separation control of aircraft in random wind fields based on MPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2860-2871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0414

基于MPC的随机风场下航空器纵向自主间隔控制

doi: 10.13700/j.bh.1001-5965.2023.0414
基金项目: 

国家自然科学基金(61773202,52072174)

详细信息
    通讯作者:

    E-mail:tangxinmin@nuaa.edu.cn

  • 中图分类号: V249.12;TB553

Longitudinal autonomous separation control of aircraft in random wind fields based on MPC

Funds: 

National Natural Science Foundation of China (61773202,52072174)

More Information
  • 摘要:

    针对航迹随机扰动下的纵向自主间隔保持问题,高空风这一随机因素往往导致两机纵向间隔鲁棒性较差的情况,基于此,提出基于模型预测控制(MPC)的航空器纵向自主间隔控制方法。建立两机所受风场差值与纵向间隔的非线性运动学微分方程,推导线性时变预测模型,选取两机的纵向间隔和航路偏差距离为优化目标,高空风为随机扰动量,前机的真空速和偏航角作为观测量,并在空中安全和航空器性能约束中加入终端等式约束保持系统的稳定性。为验证所提方法的有效性,在规定的120 s仿真时间内,设置3组不同期望纵向间隔分别为12,13,14 km,通过设计的MPC控制器,在滚动时域周期内通过控制后机真空速和偏航角,两机纵向间隔曲线较为平滑且始终不低于最小安全间隔10 km,分别在第74,90,118 s稳定在期望的目标纵向间隔,在第58,74,95 s开始回归航路,最终回到航路中心线;设置了2组风场对照组,一组为预报风强度增大2倍,另一组为紊流风的扰动强度增大8倍,均能分别在第61,72 s平滑且稳定地建立期望的纵向间隔12 km。

     

  • 图 1  随机风场下的航空器纵向间隔模型

    Figure 1.  Aircraft longitudinal separation model in random wind fields

    图 2  基于模型预测控制的纵向间隔控制设计

    Figure 2.  Design of longitudinal separation control based on MPC

    图 3  前机真空速与时间的关系

    Figure 3.  Relationship between vacuum velocity and time of front aircraft

    图 4  xy方向风场差值与时间的关系

    Figure 4.  Relationship between wind field difference in x and y directions and time

    图 5  不执行间隔保持情况下的后机纵向间隔和航路偏差距离曲线

    Figure 5.  Longitudinal separation and route deviation curves of rear aircraft without separation maintenance

    图 6  不同期望纵向间隔下的两机纵向间隔-时间曲线

    Figure 6.  Longitudinal separation-time curves under different expectation longitudinal separation between two aircrafts

    图 7  不同期望纵向间隔下的两机实时纵向间隔与期望纵向间隔的差值-时间曲线

    Figure 7.  Difference between real-time longitudinal separation and expectation longitudinal separation-time curves under different expectation longitudinal separations between two aircrafts

    图 8  不同期望纵向间隔下的航路偏差距离-时间曲线

    Figure 8.  Route deviation distance-time curves under different expectation longitudinal separations

    图 9  不同期望纵向间隔下的后机真空速-时间曲线

    Figure 9.  Vacuum speed-time curves of the following aircraft under different expectation longitudinal separations

    图 10  不同期望纵向间隔下的后机偏航角-时间曲线

    Figure 10.  Yaw angle-time curves of the following aircraft under different expectation longitudinal separations

    图 11  随机风场模型对照组1

    Figure 11.  Random wind field model control group 1

    图 12  随机风场模型对照组2

    Figure 12.  Random wind field model control group 2

    图 13  随机风场模型对照组3

    Figure 13.  Random wind field model control group 3

    表  1  随机风场模型参数

    Table  1.   Parameters of random wind model

    参数 x y
    平均风预报风差值/(m·s−1) 9.4286 4.4983
    紊流风的概率分布 $ R_{x}^{n}\sim N(0,1) $ $ {R}_{y}^{n}\sim N(0,1) $
    紊流风的相对误差水平 0.1 0.08
    起始峰值强度 9.4286 4.4983
    衰减系数 0.1 0.15
    衰减时间/s 40~50,80~120 40~50,80~120
    下载: 导出CSV

    表  2  MPC控制器参数

    Table  2.   Model predictive controller parameters

    参数 设定值
    状态量个数$ N_{{\boldsymbol{x}}} $ 2
    控制量个数$ N_{{\boldsymbol{u}}} $ 2
    输出量个数$ N_{{\boldsymbol{y}}} $ 2
    随机扰动量个数$ N_{{\mathrm{w}}} $ 2
    可测扰动量个数$ N_{{\mathrm{f}}} $ 1
    仿真步长 120
    采样周期$ \Delta T $/s 1
    滚动时域周期$ N $/s 10
    跟踪项加权系数矩阵$ {\boldsymbol{Q}} $ [0.8,0.2]
    终端项加权系数矩阵$ {\boldsymbol{P}} $ [0.8,0.2]
    下载: 导出CSV

    表  3  控制量约束和输出量约束范围

    Table  3.   Control quantity and output quantity constraint range

    系统量 参数 约束范围
    控制量 真空速/(m·s−1) [220,280]
    偏航角/(°) [−10,10]
    输出量 纵向间隔/km [10,15]
    航路偏差距离/km [−10,10]
    下载: 导出CSV

    表  4  纵向间隔保持仿真结果

    Table  4.   Simulation results of longitudinal separation maintenance

    期望纵向
    间隔/km
    建立纵向
    间隔时间/s
    开始回归
    航路时间/s
    最大航路
    偏差距离/km
    达到最大航路
    偏差距离时间/s
    12 74 58 0.88046 14
    13 90 74 1.53811 23
    14 118 95 2.12746 31
    下载: 导出CSV

    表  5  随机风场对照组参数

    Table  5.   Parameters of random wind field control groups

    对照组序号 平均风预报风数值/(m·s−1) 紊流风相对误差水平
    前机 后机 x y
    1 40 30 0.1 0.08
    2 80 60 0.1 0.08
    3 40 30 0.8 0.64
    下载: 导出CSV
  • [1] BALLIN M, WING D, HUGHES M, et al. Airborne separation assurance and traffic management-research of concepts and technology[C]//Proceedings of the Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999.
    [2] 章学锋, 李洪伟, 冯涛. 机载间隔保持系统建模及仿真[J]. 中国民航飞行学院学报, 2020, 31(1): 51-55.

    ZHANG X F, LI H W, FENG T. Model and simulation of airborne separation assurance system[J]. Journal of Civil Aviation Flight University of China, 2020, 31(1): 51-55(in Chinese).
    [3] 中国民用航空局空中交通管理局. 中国民航现代化空中交通管理系统体系架构: IB-TM-2016-003[S]. 北京: 中国民用航空局空中交通管理局, 2016.

    Civil Aviation Administration of China Air Traffic Management Bureau. Architecture of CAAC modern air traffic management system: IB-TM-2016-003[S]. Beijing: Civil Aviation Administration of China Air Traffic Management Bureau, 2016(in Chinese).
    [4] 王莉莉, 朱博, 位放. 近距平行跑道配对进近微观跟驰模型研究[J]. 安全与环境学报, 2017, 17(3): 985-988.

    WANG L L, ZHU B, WEI F. Microscopic tracing model for the paired approach to the narrow-spaced parallel runways[J]. Journal of Safety and Environment, 2017, 17(3): 985-988(in Chinese).
    [5] 王莉莉, 王坤. 飞机流宏观与微观同高度纵向间隔研究[J]. 安全与环境学报, 2016, 16(5): 78-82.

    WANG L L, WANG K. Study of the longitudinal interval for the airplanes to keep away at the same height both from the macro- and micro point of view[J]. Journal of Safety and Environment, 2016, 16(5): 78-82(in Chinese).
    [6] 王超, 朱明. 空中交通流微观尾随时距分布模型[J]. 计算机仿真, 2018, 35(5): 55-59. doi: 10.3969/j.issn.1006-9348.2018.05.012

    WANG C, ZHU M. Microscopic aircraft-following headway distribution model of air traffic flow[J]. Computer Simulation, 2018, 35(5): 55-59(in Chinese). doi: 10.3969/j.issn.1006-9348.2018.05.012
    [7] HUA M Z, ZHANG M, TANG X M, et al. Structural modelling and deceleration algorithm for a follow aircraft on performance-based navigation airway based on multi-agent technique[J]. Cybernetics and Information Technologies, 2015, 15(6): 46-56. doi: 10.1515/cait-2015-0066
    [8] TAKEICHI N, NAKAMURA Y, FUKUOKA K. Fundamental characteristics of decentralized air traffic flow control in high density corridor[C]//Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences. [S. l. ]: ICAS, 2012.
    [9] NAKAMURA Y, TAKEICHI N, KAGEYAMA K. A self-separation algorithm using relative speed for a high-density air corridor[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(6): 336-342. doi: 10.2322/tjsass.57.336
    [10] TAKEICHI N, NAKAMURA Y, KAGEYAMA K. Aircraft self-separation algorithm for high density air corridor operation based on flight intent[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(3): 179-185. doi: 10.2322/tjsass.57.179
    [11] FUKUOKA K, TAKEICHI N, NAKAMURA Y. A self-separation algorithm in a high density air corridor feasible for a human pilot control[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2014, 62(3): 107-115. doi: 10.2322/jjsass.62.107
    [12] 汤新民, 郑鹏程. 航路序贯飞行条件下的航空器自主间隔控制[J]. 南京麻豆精品秘 国产传媒学报, 2019, 51(6): 742-748.

    TANG X M, ZHENG P C. Aircraft autonomous separation control under sequential flying conditions[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 742-748(in Chinese).
    [13] TIAN Y, DONG Y L, YE B J, et al. A framework for the assessment of distributed self-separation procedures for air traffic in flow corridors[J]. IEEE Access, 2019, 7: 123544-123557. doi: 10.1109/ACCESS.2019.2937655
    [14] 王瑜嘉, 王永国, 鲁鹏. 翼身融合飞机在风场中的建模与Simulink仿真[J]. 科技风, 2021(29): 4-6.

    WANG Y J, WANG Y G, LU P. Modeling and Simulink simulation of blended wing body aircraft in wind field[J]. Science and Technology Wind, 2021(29): 4-6(in Chinese).
    [15] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 49-50.

    GONG J W, JIANG Y, XU W. Model predictive control for unmanned vehicles[M]. Beijing: Beijing Institute of Technology Press, 2014: 49-50(in Chinese).
    [16] 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013: 1-3.

    CHEN H. Model predictive control[M]. Beijing: Science Press, 2013: 1-3(in Chinese).
    [17] 万兵, 苏析超, 汪节, 等. 基于模型预测控制算法的精确着舰控制方法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(4): 1197-1207. doi: 10.13700/j.bh.1001-5965.2022.0383

    WAN B, SU X C, WANG J, et al. Research on accurate landing control based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1197-1207(in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383
    [18] 徐哲, 胡趁义, 龙永文, 等. 车辆纵向跟车舒适性模型预测控制算法研究[J]. 重庆理工大学学报(自然科学), 2022, 36(12): 9-17.

    XU Z, HU C Y, LONG Y W, et al. Research on model predictive control algorithm for longitudinal vehicle following comfort[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(12): 9-17(in Chinese).
    [19] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2016.

    Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2016(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  93
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-10-08
  • 网络出版日期:  2023-10-24
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答