留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对航拍小目标检测的YOLOv7改进方法

刘一诺 张琪 王蓉 李冲

刘一诺,张琪,王蓉,等. 针对航拍小目标检测的YOLOv7改进方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2506-2512 doi: 10.13700/j.bh.1001-5965.2023.0411
引用本文: 刘一诺,张琪,王蓉,等. 针对航拍小目标检测的YOLOv7改进方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2506-2512 doi: 10.13700/j.bh.1001-5965.2023.0411
LIU Y N,ZHANG Q,WANG R,et al. Improved YOLOv7 method for aerial small target detection in aerial photography[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2506-2512 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0411
Citation: LIU Y N,ZHANG Q,WANG R,et al. Improved YOLOv7 method for aerial small target detection in aerial photography[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2506-2512 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0411

针对航拍小目标检测的YOLOv7改进方法

doi: 10.13700/j.bh.1001-5965.2023.0411
基金项目: 

国家自然科学基金(62076246);中国人民公安大学安全防范工程双一流专项(2023SYL08)

详细信息
    通讯作者:

    E-mail:qi.zhang@ppsuc.edu.cn

  • 中图分类号: V221+.3;TB553

Improved YOLOv7 method for aerial small target detection in aerial photography

Funds: 

National Natural Science Foundation of China (62076246); Double First-Class Special Project in Security Engineering at People’s Public Security University of China (2023SYL08)

More Information
  • 摘要:

    针对目前检测技术在航拍小目标检测任务中存在的漏检率和误检率较高的问题,提出一种基于改进YOLOv7的航拍小目标检测方法。在主干网络中加入CBAM融合注意力机制,将特征图在空间和通道两方面合理分配网络权重,抑制背景干扰,提升检测精度;引入一种用于低分辨率图像和小目标细化检测的SPD-Conv模块,消除原有卷积模块的跨卷积层和池化层,解决了原始卷积模块中存在的细粒度信息丢失以及对于特征表示学习效率较低的问题;在处理后的DOTA航拍数据集上进行性能评估。实验结果表明:改进的YOLOv7算法在处理后的DOTA航拍数据集上准确率P达到83.7%,召回率R达到78.2%,均值平均精度mAP50达到81.5%,比原始YOLOv7算法精度提升了3.1%。说明所提算法可以有效降低漏检和错检率,具有良好性能。

     

  • 图 1  E-ELAN

    Figure 1.  Efficient aggregation networks

    图 2  模型缩放

    Figure 2.  Model scaling

    图 3  重参数化模型

    Figure 3.  Reparametric models

    图 4  辅助头检测

    Figure 4.  Auxiliary head detection

    图 5  改进YOLOv7模型框架

    Figure 5.  Improvements to the YOLOv7 model framework

    图 6  CBAM模块

    Figure 6.  Convolutional block attention module

    图 7  通道注意力模块

    Figure 7.  Channel attention module

    图 8  空间注意力模块

    Figure 8.  Spatial attention module

    图 9  SPD-Conv模块

    Figure 9.  Space-to-depth conv module

    图 10  数据集部分样本示例

    Figure 10.  Example of a partial sample of a dataset

    图 11  原始算法下的目标检测

    Figure 11.  Object detection under the original algorithm

    图 12  改进算法下的目标检测

    Figure 12.  Improved object detection under the algorithm

    表  1  实验评估指标对比

    Table  1.   Comparison of experimental evaluation indicators %

    模型 P R mAP50
    Y 83.0 75.4 78.4
    YS 83.2 76.6 79.8
    YC 83.6 78.0 80.7
    YSC 83.7 78.2 81.5
    下载: 导出CSV

    表  2  实验评估指标对比

    Table  2.   Comparison of experimental evaluation indicators

    模型 输入尺寸/像素 mAP50/%
    Fast RCNN 720×720 54.5
    YOLOv5 720×720 67.4
    YOLOv7 720×720 78.4
    PFP-Net[14] 720×720 79.3
    SSD[15] 720×720 80.6
    OURS 720×720 81.5
    下载: 导出CSV

    表  3  DOTA 数据集上主要类别目标检测精度

    Table  3.   Accuracy of target detection for each category on the DOTA dataset %

    模型PlaneBaseball-diamondHelicopterRoundaboutTennis-courtHarborLarge-vehicleBasketball-courtShip
    YOLOv792.486.272.664.992.483.789.487.289.0
    OURS96.788.977.870.295.887.791.388.188.8
    下载: 导出CSV
  • [1] NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. SSH: single stage headless face detector[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4885-4894.
    [2] ZHANG L L, LIN L, LIANG X D, et al. Is faster R-CNN doing well for pedestrian detection?[C]//Proceedings of the European Conference on Computer Vision– ECCV 2016. Berlin: Springer, 2016: 443-457.
    [3] RAGHUNANDAN A, Mohana, RAGHAV P, et al. Object detection algorithms for video surveillance applications[C]//Proceedings of the 2018 International Conference on Communication and Signal Processing. Piscataway: IEEE Press, 2018: 563-568.
    [4] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. doi: 10.1007/s11263-013-0620-5
    [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [7] REDMON J, FARHADI A. Yolov3: an incremental improvement [EB/OL]. (2018-04-08)[2021-03-25]. http://arxiv.org/10.48550/arxiv.1804.02767.
    [8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2021-04-15]. http://arxiv.org/abs/2004.10934.
    [9] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 7464-7475.
    [10] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the Computer Vision – ECCV 2018. Berlin: Springer, 2018: 3-19.
    [11] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[EB/OL]. (2022-08-07)[2022-08-21]. http://arxiv.org/abs/2208.03641v1.
    [12] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983.
    [13] CHEN Y C, ZHENG W S, LAI J H, et al. An asymmetric distance model for cross-view feature mapping in person reidentification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1661-1675. doi: 10.1109/TCSVT.2016.2515309
    [14] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[EB/OL]. (2014-04-27)[2022-08-22]. http://doi.org/10.48550/arxiv.1612.01105.
    [15] BERG A C, FU C Y, SZEGEDY C, et al. SSD: single shot MultiBox detector[EB/OL]. (2015-03-30)[2023-09-16]. http://doi.org/10.1007/978-3-319-46448-0_2.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  104
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-12-06
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答