留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多元优化的批量图像隐写载体选择方法

王仰光 姚远志 俞能海

王仰光,姚远志,俞能海. 基于多元优化的批量图像隐写载体选择方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2468-2477 doi: 10.13700/j.bh.1001-5965.2023.0380
引用本文: 王仰光,姚远志,俞能海. 基于多元优化的批量图像隐写载体选择方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2468-2477 doi: 10.13700/j.bh.1001-5965.2023.0380
WANG Y G,YAO Y Z,YU N H. Cover selection method for batch image steganography based on multivariate optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2468-2477 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0380
Citation: WANG Y G,YAO Y Z,YU N H. Cover selection method for batch image steganography based on multivariate optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2468-2477 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0380

基于多元优化的批量图像隐写载体选择方法

doi: 10.13700/j.bh.1001-5965.2023.0380
基金项目: 

国家重点研发计划基金(2018YFB0804102);国家自然科学基金(61802357);中央高校基本科研业务费专项资金(WK3480000009)

详细信息
    通讯作者:

    E-mail:yaoyz@hfut.edu.cn

  • 中图分类号: TP309.2

Cover selection method for batch image steganography based on multivariate optimization

Funds: 

National Key Research and Development Program of China (2018YFB0804102); National Natural Science Foundation of China (61802357); The Fundamental Research Funds for the Central Universities (WK3480000009)

More Information
  • 摘要:

    批量图像隐写通过载体选择在多张载体图像中嵌入秘密信息,为社交网络中的隐蔽通信提供有效的途径。与传统的图像隐写相比,批量图像隐写的关键科学问题是在保证抗检测性能的情况下设计有效的载体选择方法。基于此,提出一种基于多元优化的批量图像隐写载体选择方法,通过联合分析嵌入失真、图像相关性、嵌入容量三元因素,将批量图像隐写中的载体选择建模为多元优化问题。同时,针对社交网络可能对载密图像进行压缩的情况,在批量图像隐写载体选择时设计了秘密信息分片与重组策略,提升了批量图像隐写的鲁棒性。充分的实验结果表明:所提方法在抗检测性能、嵌入容量和鲁棒性上取得了令人满意的效果,为基于社交网络的隐蔽通信提供了技术支撑。

     

  • 图 1  集成分类器流程示意图

    Figure 1.  Flowchart of ensemble classifier process

    图 2  基于多元优化的批量图像隐写载体选择方法

    Figure 2.  Cover selection method for batch image steganography based on multivariate optimization

    图 3  10000张JPEG图像的嵌入失真分布

    Figure 3.  Embedding distortion for 10000 JPEG images

    图 4  空域图像和JPEG图像隐写后的SVD变化幅度展示

    Figure 4.  Change in SVD of spatial domain and JPEG images after steganography

    图 5  10000张JPEG图像的嵌入容量分布

    Figure 5.  Embedding capacity for 10000 JPEG images

    图 6  不同权值下的错误检测概率分布

    Figure 6.  Probability distributions of false detections for different weights

    表  1  单因素下的抗检测性分析

    Table  1.   Undetectability analysis under single-factor conditions

    方法 PE
    k=1000 k=2000 k=3000 k=4000 k=5000
    Rand 0.2564 0.2266 0.2122 0.2012 0.1974
    Dis 0.3410 0.3065 0.2872 0.2679 0.2520
    IS 0.3442 0.3049 0.2786 0.2690 0.2520
    EC 0.3522 0.3163 0.2900 0.2729 0.2553
    下载: 导出CSV

    表  2  不同条件下的错误检测概率(QF=60)

    Table  2.   Probability of false detections under different conditions (QF = 60)

    嵌入率 特征集 方法 PE
    k=1000 k=2000 k=3000 k=4000 k=5000
    0.4cfstarRand0.30580.28350.27320.26000.2600
    Liao[13]0.36960.33110.30950.29540.2801
    Wang[14]0.37600.34780.32390.30490.2989
    本文方法0.38020.34820.32850.30530.2966
    ccJRMRand0.29000.26860.25850.24900.2488
    Liao[13]0.35080.32530.30090.28650.2677
    Wang[14]0.35980.33600.31380.29850.2882
    本文方法0.36300.33810.31680.29890.2895
    0.5cfstarRand0.25020.22030.20230.19050.1885
    Liao[13]0.31150.26300.23880.22410.2085
    Wang[14]0.31670.28030.25400.23590.2244
    本文方法0.32210.28690.25570.23530.2236
    ccJRMRand0.22980.20220.18870.17470.1725
    Liao[13]0.28400.24850.23000.21080.1913
    Wang[14]0.29360.26400.24060.22130.2022
    本文方法0.29900.26750.24300.21990.2055
    下载: 导出CSV

    表  3  不同条件下的错误检测概率(QF=75)

    Table  3.   Probability of false detections under different conditions (QF = 75)

    嵌入率 特征集 方法 PE
    k=1000 k=2000 k=3000 k=4000 k=5000
    0.4cfstarRand0.32820.30670.29710.28660.2834
    Liao[13]0.42030.38790.36650.35660.3373
    Wang[14]0.43070.39480.37810.36320.3515
    本文方法0.42750.39750.38470.36480.3525
    ccJRMRand0.31280.28750.28130.27130.2689
    Liao[13]0.40020.37640.35420.33640.3234
    Wang[14]0.40360.38310.36390.34630.3358
    本文方法0.40710.38460.36550.35120.3353
    0.5cfstarRand0.28000.25210.23580.22200.2159
    Liao[13]0.38000.33790.31270.28960.2775
    Wang[14]0.38470.34740.32440.30310.2826
    本文方法0.39430.34850.32850.30320.2890
    ccJRMRand0.25640.22660.21220.20120.1974
    Liao[13]0.34100.30650.28720.26790.2520
    Wang[14]0.35100.31740.29190.27540.2660
    本文方法0.35330.32030.29330.27770.2661
    下载: 导出CSV

    表  4  不同条件下的错误检测概率(QF=90)

    Table  4.   Probability of false detections under different conditions (QF = 90)

    嵌入率 特征集 方法 PE
    k=1000 k=2000 k=3000 k=4000 k=5000
    0.4 cfstar Rand 0.3249 0.3132 0.3098 0.3016 0.2994
    Liao[13] 0.4013 0.3938 0.3847 0.3810 0.3741
    Wang[14] 0.4134 0.4060 0.3963 0.3827 0.3700
    本文方法 0.4213 0.4105 0.4047 0.3913 0.3784
    ccJRM Rand 0.3168 0.2983 0.2919 0.2871 0.2846
    Liao[13] 0.4009 0.3917 0.3778 0.3702 0.3612
    Wang[14] 0.4146 0.3956 0.3841 0.3769 0.3620
    本文方法 0.4195 0.4004 0.3865 0.3780 0.3639
    0.5 cfstar Rand 0.2804 0.2599 0.2521 0.2407 0.2373
    Liao[13] 0.3660 0.3576 0.3406 0.3320 0.3175
    Wang[14] 0.3758 0.3655 0.3529 0.3326 0.3165
    本文方法 0.3824 0.3660 0.3551 0.3355 0.3210
    ccJRM Rand 0.2671 0.2469 0.2370 0.2290 0.2277
    Liao[13] 0.3648 0.3467 0.3275 0.3182 0.3056
    Wang[14] 0.3662 0.3535 0.3396 0.3255 0.3053
    本文方法 0.3735 0.3568 0.3396 0.3285 0.3159
    下载: 导出CSV

    表  5  Wang等的方法[14]和本文方法嵌入容量的对比

    Table  5.   Comparison of embedding capacity between Wang et al.’s method[14] and proposed method

    QF 方法 嵌入容量/bit
    k=1000 k=2000 k=3000 k=4000 k=5000
    60 Wang[14] 69254497 122784610 168444548 207175886 235671773
    本文方法 69264640 122781191 168444548 207293584 235880610
    75 Wang[14] 88527118 157237348 216089517 267350520 309605320
    本文方法 88540196 157251458 216143376 267350520 309758006
    90 Wang[14] 121091974 221886393 310810927 389066645 461304521
    本文方法 121203657 222234100 311097664 389620084 462032474
    下载: 导出CSV

    表  6  不同平均数据丢失率下的秘密信息恢复正确率

    Table  6.   Accuracy of secret information recovery under different average data loss rates %

    数据冗余率 平均数据丢失率 恢复正确率
    嵌入率为0.15 嵌入率为0.25
    44.44 33.49 72 65
    51.72 0 0
    83.87 81.27 56 43
    91.24 0 0
    下载: 导出CSV

    表  7  4种载体选择方法的时间复杂度

    Table  7.   Time complexity of four cover selection methods s

    方法 时间复杂度
    Rand 0.0015
    Liao等[13] 6244.25
    Wang等[14] 10687.36
    本文方法 10836.71
    下载: 导出CSV
  • [1] SALMAN A. Facebook by the numbers[EB/OL]. (2022-12-08)[2023-04-13]. http://omnicoreagency.com/-facebook-statistics/.
    [2] SIMMONS G J. The prisoners’ problem and the subliminal channel[C]//Advances in Cryptology. Berlin: Springer, 1984: 51-67.
    [3] FILLER T, JUDAS J, FRIDRICH J. Minimizing additive distortion in steganography using syndrome-trellis codes[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935. doi: 10.1109/TIFS.2011.2134094
    [4] HOLUB V, FRIDRICH J. Digital image steganography using universal distortion[C]//Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2013: 59-68.
    [5] GUO L J, NI J Q, SHI Y Q. Uniform embedding for efficient JPEG steganography[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 814-825. doi: 10.1109/TIFS.2014.2312817
    [6] COGRANNE R, GIBOULOT Q, BAS P. Steganography by minimizing statistical detectability: the cases of JPEG and color images[C]//Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2020: 161-167.
    [7] PAN Y F, NI J Q, SU W K. Improved uniform embedding for efficient JPEG steganography[C]//Cloud Computing and Security. Berlin: Springer, 2016: 125-133.
    [8] WANG Z C, ZHANG X P, YIN Z X. Hybrid distortion function for JPEG steganography[J]. Journal of Electronic Imaging, 2016, 25: 050501. doi: 10.1117/1.JEI.25.5.050501
    [9] WEI Q D, YIN Z X, WANG Z C, et al. Distortion function based on residual blocks for JPEG steganography[J]. Multimedia Tools and Applications, 2018, 77(14): 17875-17888. doi: 10.1007/s11042-017-5053-7
    [10] 张卫明, 王宏霞, 李斌, 等. 多媒体隐写研究进展[J]. 中国图象图形学报, 2022, 27(6): 1918-1943. doi: 10.11834/jig.211272

    ZHANG W M, WANG H X, LI B, et al. Overview of steganography on multimedia[J]. Journal of Image and Graphics, 2022, 27(6): 1918-1943(in Chinese). doi: 10.11834/jig.211272
    [11] KER A D. Batch steganography and pooled steganalysis[C]//Information Hiding. Berlin: Springer, 2007: 265-281.
    [12] KER A D. Perturbation hiding and the batch steganography problem[C]//Information Hiding. Berlin: Springer, 2008: 45-59.
    [13] LIAO X, YIN J J, CHEN M L, et al. Adaptive payload distribution in multiple images steganography based on image texture features[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 897-911.
    [14] WANG Z C, FENG G R, SHEN L Q, et al. Cover selection for steganography using image similarity[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(3): 2328-2340.
    [15] YIN Z X, KE L F. Robust adaptive steganography based on dither modulation and modification with re-compression[J]. IEEE Transactions on Signal and Information Processing Over Networks, 2021, 7: 336-345. doi: 10.1109/TSIPN.2021.3081373
    [16] DUAN X L, LI B, YIN Z X, et al. Robust image steganography against lossy JPEG compression based on embedding domain selection and adaptive error correction[J]. Expert Systems with Applications, 2023, 229: 120416. doi: 10.1016/j.eswa.2023.120416
    [17] KER A D. A capacity result for batch steganography[J]. IEEE Signal Processing Letters, 2007, 14(8): 525-528. doi: 10.1109/LSP.2006.891319
    [18] EVSUTIN O, KOKURINA A, MESHCHERYAKOV R. Approach to the selection of the best cover image for information embedding in JPEG images based on the principles of the optimality[J]. Journal of Decision Systems, 2018, 27(S1): 256-264. doi: 10.1080/12460125.2018.1460163
    [19] ZHONG N, QIAN Z X, WANG Z C, et al. Batch steganography via generative network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(1): 88-97. doi: 10.1109/TCSVT.2020.2974884
    [20] WANG Z C, ZHANG X P, QIAN Z X. Practical cover selection for steganography[J]. IEEE Signal Processing Letters, 2019, 27: 71-75.
    [21] WANG Z C, ZHANG X P, YIN Z X. Joint cover-selection and payload-allocation by steganographic distortion optimization[J]. IEEE Signal Processing Letters, 2018, 25(10): 1530-1534. doi: 10.1109/LSP.2018.2865888
    [22] HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014(1): 1. doi: 10.1186/1687-417X-2014-1
    [23] KODOVSKY J, FRIDRICH J, HOLUB V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432-444. doi: 10.1109/TIFS.2011.2175919
    [24] KODOVSKÝ J, FRIDRICH J. Steganalysis of JPEG images using rich models[C]//Media Watermarking, Security, and Forensics, Bellingham: SPIE, 2012, 8303: 7.
    [25] JESSICA F. BOSSbase[EB/OL]. (2018-10-23)[2023-04-13]. http://dde.binghamton.edu/download/.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  78
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 录用日期:  2023-09-02
  • 网络出版日期:  2023-11-08
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答