留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向低延迟视频压缩感知的搜索窗自适应重构

孙仁慧 刘浩 邓开连 燕帅

孙仁慧,刘浩,邓开连,等. 面向低延迟视频压缩感知的搜索窗自适应重构[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2374-2383 doi: 10.13700/j.bh.1001-5965.2023.0333
引用本文: 孙仁慧,刘浩,邓开连,等. 面向低延迟视频压缩感知的搜索窗自适应重构[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2374-2383 doi: 10.13700/j.bh.1001-5965.2023.0333
SUN R H,LIU H,DENG K L,et al. Adaptive search window reconstruction for low-delay video compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2374-2383 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0333
Citation: SUN R H,LIU H,DENG K L,et al. Adaptive search window reconstruction for low-delay video compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2374-2383 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0333

面向低延迟视频压缩感知的搜索窗自适应重构

doi: 10.13700/j.bh.1001-5965.2023.0333
基金项目: 

国家自然科学基金(62001099)

详细信息
    通讯作者:

    E-mail:liuhao@dhu.edu.cn

  • 中图分类号: TN919.8

Adaptive search window reconstruction for low-delay video compressive sensing

Funds: 

National Natural Science Foundation of China (62001099)

More Information
  • 摘要:

    面向分布式视频压缩感知,帧间多假设预测能够降低编码端的运算量、提高解码端非关键帧的恢复质量,因此,近年来出现了很多与其相关的优化算法。然而在现有算法中,假设集的搜索窗口是大小经验固定的正方形区域。为进一步提高假设集质量、降低解码端时延,提出一种搜索窗口位置和大小自适应变化的重构算法。所提算法根据光流法快速确定相邻非关键帧之间的运动向量;联合该运动向量和前向相邻非关键帧与关键帧之间的运动信息,在关键帧中确定搜索窗口的中心块位置;由当前重构块与搜索窗口中心块的相对位置关系自适应地确定一个符合运动变化的矩形搜索窗口。在低延迟框架下对多个视频序列进行实验分析。实验结果表明:所提算法能够有效提高非关键帧的恢复质量,并减少运行时间。

     

  • 图 1  DCVS系统架构

    Figure 1.  DCVS system architecture

    图 2  重构中的运动估计过程

    Figure 2.  Motion estimation process in reconstruction

    图 3  低延迟框架

    Figure 3.  Low-delay framework

    图 4  本文算法流程

    Figure 4.  Flow of the proposed algorithm

    图 5  非关键帧$C{_{{{\mathrm{S}}i}}}$的重构过程

    Figure 5.  Reconstruction process of non-keyframe $C_{{\mathrm{S}}i}$

    图 6  搜索窗口构建方案

    Figure 6.  Construction scheme of search window

    图 7  不同尺寸搜索窗口的恢复质量

    Figure 7.  Restoration quality for search windows with different sizes

    图 8  自适应位置与固定位置的搜索窗口恢复质量

    Figure 8.  Restoration quality for adaptive-position and fixed-position search windows

    图 9  不同算法恢复质量的主观比较

    Figure 9.  Subjective comparison of restoration quality for different algorithms

    表  1  不同窗口尺寸下块匹配过程的CPU运行时间

    Table  1.   CPU runtime of block matching process under different window sizes

    窗口尺寸/
    像素
    CPU运行时间/s
    采样率
    为0.10
    采样率
    为0.15
    采样率
    为0.20
    采样率
    为0.25
    采样率
    为0.30
    10 33.5 37.5 42.3 45.2 47.3
    20 49.3 52.3 57.3 64.3 74.6
    30 70.2 76.4 82.4 86.6 95.3
    自适应尺寸 42.2 46.9 51.6 59.1 63.1
    下载: 导出CSV

    表  2  不同运动程度视频序列上不同算法的PSNR

    Table  2.   PSNR of different algorithms on video sequences with different motion degrees

    视频 算法 PSNR/dB
    采样率为0.10 采样率为0.15 采样率为0.20 采样率为0.25 采样率为0.30 均值
    News MC[9] 31.19 32.26 33.38 34.24 34.97 33.21
    NMH[18] 33.92 34.86 36.04 36.88 37.24 35.79
    IPH[19] 34.12 35.02 36.46 37.32 37.63 36.11
    WMR 34.35 35.29 36.72 37.56 37.94 36.37
    Foreman MC[9] 31.49 32.57 34.12 34.78 35.79 33.75
    NMH[18] 33.52 34.70 36.35 37.04 38.14 35.95
    IPH[19] 33.77 34.97 36.65 37.36 38.48 36.25
    WMR 34.11 35.42 36.94 37.66 38.76 36.58
    Football MC[9] 25.34 27.11 28.63 29.93 31.10 28.42
    NMH[18] 27.35 29.16 30.83 32.26 33.45 30.61
    IPH[19] 27.61 29.43 31.10 32.57 33.77 30.90
    WMR 27.83 29.67 31.35 32.84 34.06 31.15
    下载: 导出CSV

    表  3  不同算法的 CPU 运行时间

    Table  3.   CPU runtime of different algorithms

    算法 CPU运行时间/s
    采样率
    为0.1
    采样率
    为0.15
    采样率
    为0.2
    采样率
    为0.25
    采样率
    为0.3
    MC[9] 35.3 37.8 40.4 43.6 45.3
    NMH[18] 60.3 34.6 67.7 70.2 75.6
    IPH[19] 56.2 59.7 63.3 65.3 69.9
    WMR 52.2 55.4 57.3 59.5 63.8
    下载: 导出CSV
  • [1] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083
    [2] 刘浩, 郑浩然, 黄荣. 面向量化分块CS的区域层次化预测编码[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(8): 1376-1382.

    LIU H, ZHENG H R, HUANG R. Region-hierarchical predictive coding for quantized block compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1376-1382(in Chinese).
    [3] JI Y, KANG Z, ZHANG X, et al. Model recovery for multi-input signal-output nonlinear systems based on the compressed sensing recovery theory[J]. Journal of the Franklin Institute, 2022, 359(5): 2317-2339. doi: 10.1016/j.jfranklin.2022.01.032
    [4] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731
    [5] WANG S W, YU L, XIANG S. A low complexity compressed sensing-based codec for consumer depth video sensors[J]. IEEE Transactions on Consumer Electronics, 2019, 65(4): 434-443. doi: 10.1109/TCE.2019.2929586
    [6] GAN L. Block compressed sensing of natural images[C]//Proceedings of the 15th International Conference on Digital Signal Processing. Piscataway: IEEE Press, 2007: 403-406.
    [7] DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]//Proceedings of the 16th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2009: 1393-1396.
    [8] KANG L W, LU C S. Distributed compressive video sensing[C]// Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2009: 1169-1172.
    [9] MUN S, FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]//Proceedings of the Data Compression Conference. Piscataway: IEEE Press, 2011: 183-192.
    [10] CHEN C, TRAMEL E W, FOWLER J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]// Proceedings of the Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE Press, 2011: 1193-1198.
    [11] TRAMEL E W, FOWLER J E. Video compressed sensing with multihypothesis[C]//Proceedings of the Data Compression Conference. Piscataway: IEEE Press, 2011: 193-202.
    [12] FOWLER J E. Block-based compressed sensing of images and video[J]. Foundations and Trends® in Signal Processing, 2010, 4(4): 297-416.
    [13] TROCAN M, TRAMEL E W, FOWLER J E, et al. Compressed-sensing recovery of multiview image and video sequences using signal prediction[J]. Multimedia Tools and Applications, 2014, 72(1): 95-121. doi: 10.1007/s11042-012-1330-7
    [14] KUO Y H, WU K, CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045-015-0337-4
    [15] CHEN J, CHEN Y Z, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools and Applications, 2015, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y
    [16] ZHAO C, MA S W, GAO W. Image compressive-sensing recovery using structured Laplacian sparsity in DCT domain and multi-hypothesis prediction[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2014: 1-6.
    [17] ZHENG S, ZHANG X P, CHEN J, et al. A high-efficiency compressed sensing-based terminal-to-cloud video transmission system[J]. IEEE Transactions on Multimedia, 2019, 21(8): 1905-1920. doi: 10.1109/TMM.2019.2891415
    [18] ZHENG S, CHEN J, ZHANG X P, et al. A new multihypothesis-based compressed video sensing reconstruction system[J]. IEEE Transactions on Multimedia, 2020, 23: 3577-3589.
    [19] LIU H, SUN R H. Iterative progressive-hypothesis prediction for forward interframe reconstruction of video compressive sensing[C]//Proceedings of the IEEE 24th International Workshop on Multimedia Signal Processing. Piscataway: IEEE Press, 2022: 1-6.
    [20] 刘浩, 黄荣, 袁浩东. 面向上行流媒体的CS视频流技术前沿[J]. 中国图象图形学报, 2021, 26(7): 1545-1557. doi: 10.11834/jig.200487

    LIU H, HUANG R, YUAN H D. Survey on compressive sensing video stream for uplink streaming media[J]. Journal of Image and Graphics, 2021, 26(7): 1545-1557(in Chinese). doi: 10.11834/jig.200487
    [21] 刘泉洋, 刘云清, 史俊, 等. 视频图像运动估计中的一维块匹配算法[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 424-430.

    LIU Q Y, LIU Y Q, SHI J, et al. One-dimensional block matching algorithm in video image motion estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(3): 424-430(in Chinese).
    [22] LIU Q P, XI U, ZHANG W C, et al. Improved image matching algorithm based on LK optical flow and grid motion statistics[J]. International Journal of Computer Applications in Technology, 2022, 68(1): 49-57. doi: 10.1504/IJCAT.2022.123238
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  51
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 录用日期:  2023-11-24
  • 网络出版日期:  2023-12-21
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答