留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波变换和平行注意力的多源遥感图像分类

王嘉毅 高峰 张天戈 甘言海

王嘉毅,高峰,张天戈,等. 基于小波变换和平行注意力的多源遥感图像分类[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2415-2422 doi: 10.13700/j.bh.1001-5965.2023.0329
引用本文: 王嘉毅,高峰,张天戈,等. 基于小波变换和平行注意力的多源遥感图像分类[J]. 北京麻豆精品秘 国产传媒学报,2025,51(7):2415-2422 doi: 10.13700/j.bh.1001-5965.2023.0329
WANG J Y,GAO F,ZHANG T G,et al. Multi-source remote sensing image classification based on wavelet transform and parallel attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2415-2422 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0329
Citation: WANG J Y,GAO F,ZHANG T G,et al. Multi-source remote sensing image classification based on wavelet transform and parallel attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2415-2422 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0329

基于小波变换和平行注意力的多源遥感图像分类

doi: 10.13700/j.bh.1001-5965.2023.0329
基金项目: 

国家自然科学基金(42106191);科技创新2030-新一代人工智能重大项目(2022ZD0117202)

详细信息
    通讯作者:

    E-mail:gaofeng@ouc.edu.cn

  • 中图分类号: TP753

Multi-source remote sensing image classification based on wavelet transform and parallel attention

Funds: 

National Natural Science Foundation of China (42106191); Major Innovation 2030-Major Project of New Generation Artificial Intelligence (2022ZD0117202)

More Information
  • 摘要:

    充分挖掘多源遥感图像数据特征的依赖关系,实现不同模态图像数据间的优势互补,已成为遥感领域的研究热点方向之一。现有的高光谱和合成孔径雷达(SAR)数据联合分类任务存在图像特征提取和特征表达不充分的问题,高频信息容易损失,不利于后续的分类任务,以及多源图像特征交互有限,多模态特征关联不紧密的关键难题。针对上述问题,围绕图像特征的鲁棒表达和多源特征的高效关联开展研究,提出了基于小波变换和平行注意力机制的多源遥感图像分类网络(WPANet)。基于小波变换的特征提取器可以充分利用频域分析技术,在可逆下采样的过程中充分捕捉粗/细粒度级别特征;基于平行注意力机制的特征融合器充分综合多模态遥感数据的一致性和差异性,完成强相关性特征的融合和生成,以提升分类准确度。在Augsburg和Berlin这2个真实多源遥感数据集上的实验表明:所提分类方法具有显著优势,总体准确率分别达到90.40%和76.23%,相比于深度特征交互网络(DFINet)等主流方法,在2个数据集上的总体准确率分别至少提升2.66%和12.22%。

     

  • 图 1  基于小波变换和平行注意力机制的多源遥感图像分类网络

    Figure 1.  Multi-source remote sensing image classification network based on wavelet transform and parallel attention mechanism

    图 2  小波变换特征提取器

    Figure 2.  Wavelet transform-based feature extractor

    图 3  DWT 和 IDWT 过程

    Figure 3.  DWT and IDWT process

    图 4  基于平行注意力机制的特征融合器

    Figure 4.  Feature fuser based on parallel attention mechanism

    图 5  高光谱主成分数与总体准确率关系

    Figure 5.  Relationship between hyperspectral principal component score and overall accuracy

    图 6  Augsburg 数据集上不同方法的分类结果

    Figure 6.  Classification results of different methods on Augsburg dataset

    图 7  Berlin 数据集上不同方法的分类结果

    Figure 7.  Classification results of different methods on Berlin dataset

    表  1  Augsburg数据集对比实验结果

    Table  1.   Comparative experimental results for Augsburg dataset %

    方法 分类准确度 总体
    准确率
    平均
    准确度
    Kappa
    系数
    森林
    (146/13345
    住宅区
    (264/30065
    工业区
    (21/3830
    低矮植物
    (248/26543
    配额地
    (52/523)
    商业区
    (7/1632
    水域
    (23/1502
    SVM[15] 90.55 89.81 23.03 83.73 34.23 9.71 45.92 81.60 53.82 73.17
    LBP-ELM[16] 93.65 86.81 35.12 83.21 49.33 7.94 44.99 81.47 57.29 73.41
    TBCNN[17] 94.77 95.01 71.17 85.33 56.41 15.14 22.30 87.11 62.87 81.69
    ContextCNN[18] 94.57 97.25 51.46 86.25 56.02 13.68 21.57 87.24 60.11 81.82
    DFINet[19] 95.38 95.84 69.79 86.65 64.05 13.86 28.47 88.06 64.86 82.98
    WPANet 94.81 93.66 67.52 95.49 50.10 19.91 44.81 90.40 66.61 86.28
     注:加粗数值表示最优结果。括号中数值为训练/测试样本数。
    下载: 导出CSV

    表  2  Berlin数据集对比实验结果

    Table  2.   Comparative experimental results for Berlin dataset %

    方法 分类准确度 总体
    准确率
    平均
    准确度
    Kappa
    系数
    森林
    (443/54484
    住宅区
    (423/268219
    工业区
    (499/19067
    低矮植物
    (376/58906
    土壤
    (331/17095
    配额地
    (280/13025
    商业区
    (298/24526
    水域
    (170/6502
    SVM[15] 50.08 61.07 30.68 84.29 87.30 54.00 26.61 65.40 60.48 57.43 45.36
    LBP-ELM[16] 86.17 36.95 45.46 84.09 89.72 0.00 0.35 50.17 48.32 49.25 34.65
    TBCNN[17] 76.47 62.42 43.22 78.82 76.33 73.44 49.76 82.28 65.81 67.84 41.79
    ContextCNN[18] 77.22 63.69 61.44 73.77 87.22 82.88 31.13 74.24 66.31 68.95 54.03
    DFINet[19] 68.95 67.52 43.42 81.77 75.58 80.05 40.94 79.87 67.93 67.26 55.22
    WPANet 69.35 81.06 62.22 85.17 90.47 61.21 25.08 80.04 76.23 69.32 64.36
     注:加粗数值表示最优结果。括号中数值为训练/测试样本数。
    下载: 导出CSV

    表  3  小波变换特征提取器和平行注意力特征融合器消融实验结果

    Table  3.   Results of ablation experiments with wavelet transform feature extractor and parallel attention-based feature fuser

    网络结构 总体准确率/%
    Augsburg Berlin
    卷积特征提取网络 87.27 73.86
    小波变换特征提取器 89.71 75.86
    平行注意力特征融合器 88.96 75.17
    小波变换特征提取器+平行注意力特征融合器 90.40 76.23
     注:加粗数值表示最优结果。
    下载: 导出CSV
  • [1] WANG C, ZHANG L, WEI W, et al. Dynamic super-pixel normalization for robust hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5505713.
    [2] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6-36. doi: 10.1109/MGRS.2013.2244672
    [3] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6-43. doi: 10.1109/MGRS.2013.2248301
    [4] MAN Q X, DONG P L, GUO H D. Pixel-and feature-level fusion of hyperspectral and lidar data for urban land-use classification[J]. International Journal of Remote Sensing, 2015, 36(6): 1618-1644. doi: 10.1080/01431161.2015.1015657
    [5] HU J L, GHAMISI P, SCHMITT A, et al. Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification[C]//2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Piscataway: IEEE Press, 2016: 1-5.
    [6] CHEN Y S, LI C Y, GHAMISI P, et al. Deep fusion of remote sensing data for accurate classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1253-1257. doi: 10.1109/LGRS.2017.2704625
    [7] HONG D F, GAO L R, HANG R L, et al. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 5500205.
    [8] ZHAO X D, TAO R, LI W, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355-7370. doi: 10.1109/TGRS.2020.2982064
    [9] FENG M, GAO F, FANG J, et al. Hyperspectral and lidar data classification based on linear self-attention[C]//2021 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2021: 2401-2404.
    [10] LI W, GAO Y H, ZHANG M M, et al. Asymmetric feature fusion network for hyperspectral and SAR image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 8057-8070. doi: 10.1109/TNNLS.2022.3149394
    [11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [12] KURZ F, ROSENBAUM D, LEITLOFF J, et al. Real time camera system for disaster and traffic monitoring[C]//Proceedings of International Conference on SMPR 2011. Tehran: University of Tehran, 2011: 1-6.
    [13] BAUMGARTNER A, GEGE P, KÖHLER C, et al. Characterisation methods for the hyperspectral sensor HySpex at DLR’s calibration home base[C]//Sensors, Systems, and Next-Generation Satellites XVI. Bellingham: SPIE, 201285331H.
    [14] HONG D F, HU J L, YAO J, et al. Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 68-80. doi: 10.1016/j.isprsjprs.2021.05.011
    [15] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. doi: 10.1109/TGRS.2004.831865
    [16] LI W, CHEN C, SU H J, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3681-3693. doi: 10.1109/TGRS.2014.2381602
    [17] XU X D, LI W, RAN Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 937-949. doi: 10.1109/TGRS.2017.2756851
    [18] LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4843-4855. doi: 10.1109/TIP.2017.2725580
    [19] GAO Y H, LI W, ZHANG M M, et al. Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5512615.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  755
  • HTML全文浏览量:  139
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 录用日期:  2023-09-15
  • 网络出版日期:  2023-11-07
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答