留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NNW-FlowStar软件模拟并联分离特性

张培红 周桂宇 沈盈盈 唐静 赵炜 贾洪印

张培红,周桂宇,沈盈盈,等. NNW-FlowStar软件模拟并联分离特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1620-1628 doi: 10.13700/j.bh.1001-5965.2023.0275
引用本文: 张培红,周桂宇,沈盈盈,等. NNW-FlowStar软件模拟并联分离特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1620-1628 doi: 10.13700/j.bh.1001-5965.2023.0275
ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0275
Citation: ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0275

NNW-FlowStar软件模拟并联分离特性

doi: 10.13700/j.bh.1001-5965.2023.0275
基金项目: 

国家数值风洞工程 

详细信息
    通讯作者:

    E-mail:ethnuaa@163.com

  • 中图分类号: V221+.3;TB553

Simulation of parallel separation characteristics using NNW-FlowStar software

Funds: 

National Numerical Windtunnel Project 

More Information
  • 摘要:

    两级入轨(TSTO)飞行器并联分离过程中,一级和二级飞行器之间存在激波多次反射,对飞行器的压力分布、力矩特性和飞行姿态会产生较大影响,甚至可能严重影响飞行器级间分离的安全性。基于自主开发的NNW-FlowStar软件和非结构混合网格自适应技术,对国家数值风洞工程自主设计的某两级入轨飞行器标模开展并联分离特性研究,并与风洞试验数据进行对比分析,从而验证了NNW-FlowStar软件模拟飞行器并联分离特性的可靠性和有效性。研究表明:NNW-FlowStar软件可以较好模拟两级入轨飞行器并联分离特性,数值模拟结果与试验结果吻合较好,计算得到的流场结构与风洞试验一致,采用网格自适应技术可以有效提升模拟精度。两级入轨飞行器并联分离过程会经历组合体流动、缝隙流动、小通道流动、大通道流动,最终到自由流动等不同的典型流动阶段,激波结构快速变化,存在激波/激波干扰、边界层/边界层干扰和激波/边界层干扰等复杂的流动现象。

     

  • 图 1  两级入轨飞行器标模

    Figure 1.  Standard model of two stages to orbit vehicles

    图 2  并联分离风洞试验模型

    Figure 2.  Model of parallel separation wind tunnel test

    图 3  两级入轨飞行器计算网格(密网格)

    Figure 3.  Computation grid of two stages to orbit vehicles (fine grid)

    图 4  动态优化过程网格量变化

    Figure 4.  Grid quantity change during dynamic optimization

    图 5  典型时刻网格分布

    Figure 5.  Grid distribution at typical moments

    图 6  一级飞行器法向位移比较

    Figure 6.  Comparison of normal distance for the primary vehicle

    图 7  一级飞行器轴向位移比较

    Figure 7.  Comparison of axial distance for the primary vehicle

    图 8  一级飞行器俯仰角比较

    Figure 8.  Comparison of pitch angle for the primary vehicle

    图 9  二级飞行器法向位移比较

    Figure 9.  Comparison of normal distance for the second stage vehicle

    图 10  二级飞行器轴向位移比较

    Figure 10.  Comparison of axial distance for the second vehicle

    图 11  二级飞行器俯仰角比较

    Figure 11.  Comparison of the pitch angle for the second vehicle

    图 12  粗网格和自适应网格计算得到二级飞行器上气动特性

    Figure 12.  Aerodynamic characteristics of the second vehicle for coarse and adaptation mesh

    图 13  粗网格和自适应网格模拟得到流场结构

    Figure 13.  Flow field structure for coarse and adaptation mesh calculations

    图 14  飞行器典型流场结构模拟和风洞试验对比

    Figure 14.  Typical flow field structure from simulation and wind tunnel test

  • [1] 张国成, 姚彦龙, 王慧. 美国两级入轨水平起降可重复使用空天运载器发展综述[J]. 飞机设计, 2018, 38(2): 1-6.

    ZHANG G C, YAO Y L, WANG H. A survey on development of two-stage-to-orbit horizontal-takeoff-horizontal-landing reusable launch vehicle in USA[J]. Aircraft Design, 2018, 38(2): 1-6(in Chinese).
    [2] ROBINSON J C, STANLEY D O. Structural and loads analysis of a two-stage reusable manned launch system[J]. La Revue Du Praticien, 2015, 31(5): 821-829.
    [3] 王国辉, 王小军, 杨勇, 等. 重复使用运载器气动性能CFD研究[J]. 导弹与航天运载技术, 2005(6): 6-11.

    WANG G H, WANG X J, YANG Y, et al. CFD study of aerodynamic performance of reusable launch vehicle[J]. Missiles and Space Vehicles, 2005(6): 6-11(in Chinese).
    [4] PORTER J L, AGARWAL R, AZAD R S, et al. Guide for the verification and validation of computational fluid dynamics Simulation: AIAA G-077-1998[R]. Reston: AIAA, 1998.
    [5] 王运涛. DPW Ⅳ~DPW Ⅵ数值模拟技术综述[J]. 航空学报, 2018, 39(4): 021836.

    WANG Y T. An overview of DPW Ⅳ-DPW Ⅳ numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 021836(in Chinese).
    [6] LUCKRING J M, RIZZI A W. Toward improved CFD predictions of slender airframe aerodynamics using the F-16XL aircraft (CAWAPI-2) [C]//Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
    [7] JONES G S, JOSLIN R D. Proceedings of the 2004 NASA/ONR circulation control workshop: NASA/CP-2005-213509/PT2[R]. Washington, D. C. : NASA, 2005.
    [8] LEVY D W, ZICKUHR T, VASSBERG J C, et al. Summary of data from the first AIAA CFD drag predication workshop: AIAA-2002-0811[R]. Reston: AIAA, 2002.
    [9] LAFLIN K R, KLAUSMEYER S M, ZICKUHR T, et al. Data summary from second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178. doi: 10.2514/1.10771
    [10] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3): 781-798. doi: 10.2514/1.30572
    [11] 洪俊武, 王运涛, 李伟, 等. HiLiftPW-3高升力构型数值模拟[J]. 航空学报, 2019, 40(3): 122391.

    HONG J W, WANG Y T, LI W, et al. Numerical simulation of high-lift configuration from HiLiftPW-3[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 122391(in Chinese).
    [12] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50: 1-49. doi: 10.6052/1000-0992-19-009

    ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50: 1-49(in Chinese). doi: 10.6052/1000-0992-19-009
    [13] 姜振华, 阎超. 高超声速热流高精度数值模拟方法[J]. 北京麻豆精品秘 国产传媒学报, 2011, 37(12): 1529-1533.

    JIANG Z H, YAN C. High order accurate methods in numerical simulation of hypersonic heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1529-1533(in Chinese).
    [14] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认: DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1): 34-40.

    WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0: numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 34-40(in Chinese).
    [15] 王运涛, 王光学, 陈作斌. CT-1标模大迎角静态气动特性数值模拟[J]. 航空学报, 2008, 29(4): 859-865.

    WANG Y T, WANG G X, CHEN Z B. Numerical simulation of static aerodynamic characteristics of CT-1 model at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 859-865(in Chinese).
    [16] 张耀冰, 唐静, 陈江涛, 等. 基于非结构混合网格的CHN-T1标模气动特性预测[J]. 空气动力学学报, 2019, 37(2): 262-271.

    ZHANG Y B, TANG J, CHEN J T, et al. Aerodynamic characteristics prediction of CHN-T1standard model with unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(2): 262-271(in Chinese).
    [17] 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6): 1165-1172.

    ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of national numerical windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1165-1172(in Chinese).
    [18] 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.

    CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for national numerical windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739(in Chinese).
    [19] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10): 122894. doi: 10.7527/S1000-6893.2019.22894

    TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122894(in Chinese). doi: 10.7527/S1000-6893.2019.22894
    [20] 唐静, 张健, 李彬, 等. 非结构混合网格自适应并行技术[J]. 航空学报, 2020, 41(1): 123202.

    TANG J, ZHANG J, LI B, et al. Parallel algorithms for unstructured hybrid mesh adaptation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123202(in Chinese).
    [21] 唐伟, 刘深深, 余雷, 等. 用于级间分离研究的TBCC动力TSTO气动布局概念设计[J]. 空气动力学学报, 2019, 37(5): 698-704.

    TANG W, LIU S S, YU L, et al. Conceptual design of TBCC based TSTO configurations for stage seperation investigation[J]. Acta Aerodynamica Sinica, 2019, 37(5): 698-704(in Chinese).
  • 加载中
图(14)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  123
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-08-02
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答