-
摘要:
两级入轨(TSTO)飞行器并联分离过程中,一级和二级飞行器之间存在激波多次反射,对飞行器的压力分布、力矩特性和飞行姿态会产生较大影响,甚至可能严重影响飞行器级间分离的安全性。基于自主开发的NNW-FlowStar软件和非结构混合网格自适应技术,对国家数值风洞工程自主设计的某两级入轨飞行器标模开展并联分离特性研究,并与风洞试验数据进行对比分析,从而验证了NNW-FlowStar软件模拟飞行器并联分离特性的可靠性和有效性。研究表明:NNW-FlowStar软件可以较好模拟两级入轨飞行器并联分离特性,数值模拟结果与试验结果吻合较好,计算得到的流场结构与风洞试验一致,采用网格自适应技术可以有效提升模拟精度。两级入轨飞行器并联分离过程会经历组合体流动、缝隙流动、小通道流动、大通道流动,最终到自由流动等不同的典型流动阶段,激波结构快速变化,存在激波/激波干扰、边界层/边界层干扰和激波/边界层干扰等复杂的流动现象。
-
关键词:
- 两级入轨 /
- 并联分离 /
- 数值模拟 /
- 网格自适应 /
- NNW-FlowStar
Abstract:During the parallel separation process of two stages to orbit (TSTO) vehicles, there are multiple reflections of shock waves between the first and second stage vehicles. The complex flow has a great impact on the pressure distribution, torque characteristics and flight attitude of the vehicles, and may even seriously affect the safety of the separation between stages of the vehicles. The parallel separation properties of the two stages to orbit vehicle model created by the National Numerical Wind Tunnel Project are examined using adaptation techniques for unstructured hybrid mesh and the self-developed National Numerical Wind Tunnel Project software, NNW-FlowStar. The simulation results are compared with the wind tunnel test data, and the reliability and effectiveness of NNW-FlowStar simulation of parallel separation characteristics of vehicles are confirmed. The research shows that the NNW-FlowStar can better simulate the parallel separation characteristics of the two stages to orbit the vehicle. The numerical simulation results are in good agreement with the test results. The calculated flow field structure is consistent with the wind tunnel test. Using the mesh adaptive technology can effectively improve the simulation accuracy. T In order to circle the vehicle, the two stages will separate in parallel and travel through several typical flow stages, including combination flow, gap flow, small channel flow, big channel flow, and free flow. During the whole process, the shock structures change rapidly, and there are complex flow phenomena such as shock wave interference, boundary layer interference and shock wave/boundary layer interference.
-
Key words:
- two stages to orbit /
- parallel separation /
- numerical simulation /
- mesh adaptation /
- NNW-FlowStar
-
-
[1] 张国成, 姚彦龙, 王慧. 美国两级入轨水平起降可重复使用空天运载器发展综述[J]. 飞机设计, 2018, 38(2): 1-6.ZHANG G C, YAO Y L, WANG H. A survey on development of two-stage-to-orbit horizontal-takeoff-horizontal-landing reusable launch vehicle in USA[J]. Aircraft Design, 2018, 38(2): 1-6(in Chinese). [2] ROBINSON J C, STANLEY D O. Structural and loads analysis of a two-stage reusable manned launch system[J]. La Revue Du Praticien, 2015, 31(5): 821-829. [3] 王国辉, 王小军, 杨勇, 等. 重复使用运载器气动性能CFD研究[J]. 导弹与航天运载技术, 2005(6): 6-11.WANG G H, WANG X J, YANG Y, et al. CFD study of aerodynamic performance of reusable launch vehicle[J]. Missiles and Space Vehicles, 2005(6): 6-11(in Chinese). [4] PORTER J L, AGARWAL R, AZAD R S, et al. Guide for the verification and validation of computational fluid dynamics Simulation: AIAA G-077-1998[R]. Reston: AIAA, 1998. [5] 王运涛. DPW Ⅳ~DPW Ⅵ数值模拟技术综述[J]. 航空学报, 2018, 39(4): 021836.WANG Y T. An overview of DPW Ⅳ-DPW Ⅳ numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 021836(in Chinese). [6] LUCKRING J M, RIZZI A W. Toward improved CFD predictions of slender airframe aerodynamics using the F-16XL aircraft (CAWAPI-2) [C]//Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. [7] JONES G S, JOSLIN R D. Proceedings of the 2004 NASA/ONR circulation control workshop: NASA/CP-2005-213509/PT2[R]. Washington, D. C. : NASA, 2005. [8] LEVY D W, ZICKUHR T, VASSBERG J C, et al. Summary of data from the first AIAA CFD drag predication workshop: AIAA-2002-0811[R]. Reston: AIAA, 2002. [9] LAFLIN K R, KLAUSMEYER S M, ZICKUHR T, et al. Data summary from second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178. doi: 10.2514/1.10771 [10] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3): 781-798. doi: 10.2514/1.30572 [11] 洪俊武, 王运涛, 李伟, 等. HiLiftPW-3高升力构型数值模拟[J]. 航空学报, 2019, 40(3): 122391.HONG J W, WANG Y T, LI W, et al. Numerical simulation of high-lift configuration from HiLiftPW-3[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 122391(in Chinese). [12] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50: 1-49. doi: 10.6052/1000-0992-19-009ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50: 1-49(in Chinese). doi: 10.6052/1000-0992-19-009 [13] 姜振华, 阎超. 高超声速热流高精度数值模拟方法[J]. 北京麻豆精品秘 国产传媒学报, 2011, 37(12): 1529-1533.JIANG Z H, YAN C. High order accurate methods in numerical simulation of hypersonic heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1529-1533(in Chinese). [14] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认: DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1): 34-40.WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0: numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 34-40(in Chinese). [15] 王运涛, 王光学, 陈作斌. CT-1标模大迎角静态气动特性数值模拟[J]. 航空学报, 2008, 29(4): 859-865.WANG Y T, WANG G X, CHEN Z B. Numerical simulation of static aerodynamic characteristics of CT-1 model at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 859-865(in Chinese). [16] 张耀冰, 唐静, 陈江涛, 等. 基于非结构混合网格的CHN-T1标模气动特性预测[J]. 空气动力学学报, 2019, 37(2): 262-271.ZHANG Y B, TANG J, CHEN J T, et al. Aerodynamic characteristics prediction of CHN-T1standard model with unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(2): 262-271(in Chinese). [17] 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6): 1165-1172.ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of national numerical windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1165-1172(in Chinese). [18] 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for national numerical windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739(in Chinese). [19] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10): 122894. doi: 10.7527/S1000-6893.2019.22894TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122894(in Chinese). doi: 10.7527/S1000-6893.2019.22894 [20] 唐静, 张健, 李彬, 等. 非结构混合网格自适应并行技术[J]. 航空学报, 2020, 41(1): 123202.TANG J, ZHANG J, LI B, et al. Parallel algorithms for unstructured hybrid mesh adaptation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123202(in Chinese). [21] 唐伟, 刘深深, 余雷, 等. 用于级间分离研究的TBCC动力TSTO气动布局概念设计[J]. 空气动力学学报, 2019, 37(5): 698-704.TANG W, LIU S S, YU L, et al. Conceptual design of TBCC based TSTO configurations for stage seperation investigation[J]. Acta Aerodynamica Sinica, 2019, 37(5): 698-704(in Chinese). -


下载: