留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双径向洛伦兹力磁轴承动力学及解耦控制方法

李宗育 王卫杰 王丽芬 任元 樊亚洪 李磊

李宗育,王卫杰,王丽芬,等. 双径向洛伦兹力磁轴承动力学及解耦控制方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1770-1780 doi: 10.13700/j.bh.1001-5965.2023.0262
引用本文: 李宗育,王卫杰,王丽芬,等. 双径向洛伦兹力磁轴承动力学及解耦控制方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1770-1780 doi: 10.13700/j.bh.1001-5965.2023.0262
LI Z Y,WANG W J,WANG L F,et al. Dynamics and decoupling control method of double radial Lorentz force magnetic bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1770-1780 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0262
Citation: LI Z Y,WANG W J,WANG L F,et al. Dynamics and decoupling control method of double radial Lorentz force magnetic bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1770-1780 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0262

双径向洛伦兹力磁轴承动力学及解耦控制方法

doi: 10.13700/j.bh.1001-5965.2023.0262
基金项目: 

国家自然科学基金(52075545) 

详细信息
    通讯作者:

    E-mail:wangweijie@126.com

  • 中图分类号: V448.2

Dynamics and decoupling control method of double radial Lorentz force magnetic bearings

Funds: 

National Natural Science Foundation of China (52075545) 

More Information
  • 摘要:

    为实现高精度磁浮转台的快速响应和振动抑制,针对洛伦兹力磁悬浮万向稳定平台的高精度解耦控制问题,首先阐明径向洛伦兹力磁轴承(RLFMB)工作原理,基于等效磁路法对单个径向洛伦兹力磁轴承进行动力学建模,构建转子四自由度平转运动动力学模型。设计一种基于内模结构的解耦控制器,通过补灵敏度函数Bode图验证内模控制器强鲁棒的特点。仿真算例结果表明,跟踪性能上,偏转、平动的响应时间分别较PID控制方法降低59.3%和28.2%;抗扰性能上,偏转、平动干扰残余量较PID控制方法降低38.8%和86.2%,此方法可应用于平台对载荷系统的高精、高稳、高动态指向控制。

     

  • 图 1  磁轴承主动控制绕X轴旋转示意图

    Figure 1.  Active control rotation of magnetic bearing around X-axis

    图 2  单个RLFMB截面结构示意图

    Figure 2.  Sectional structure of single RLFMB

    图 3  RLFMB磁路图

    Figure 3.  Magnetic circuit of RLFMB

    图 4  等效磁路图

    Figure 4.  Equivalent magnetic circuit

    图 5  x通道检测方案

    Figure 5.  x-channel detection scheme

    图 6  IMC模型框图

    Figure 6.  IMC model block diagram

    图 7  简化IMC模型框图

    Figure 7.  Simplified IMC model block diagram

    图 8  平转运动IMC模型框图

    Figure 8.  Block diagram of IMC model for translation and deflection

    图 9  洛伦兹力磁浮平台内模控制结构框图

    Figure 9.  Block diagram of IMC structure of Lorentz force magnetic levitation platform

    图 10  系统仿真模型

    Figure 10.  System simulation model

    图 11  补灵敏度函数Bode图

    Figure 11.  Bode diagram of complementary sensitivity function

    图 12  偏转响应曲线对比

    Figure 12.  Comparison of deflection response curves

    图 13  平动响应曲线对比

    Figure 13.  Comparison of translation response curves

    图 14  偏转干扰曲线对比

    Figure 14.  Comparison of deflection interference curves

    图 15  平动干扰曲线对比

    Figure 15.  Comparison of translation interference curves

    表  1  洛伦兹力平台系统参数

    Table  1.   Lorentz force platform system parameters

    参数 数值 参数 数值
    $ {K_{\text{i}}} $/(N·A−1) 52.5 $ {J}_y/({\text{kg}}\cdot {\mathrm{m}}^{2}) $ 1.76
    $ {J}_x/({\text{kg}}\cdot {\mathrm{m}}^{2}) $ 1.76 $ m{\text{/kg}} $ 14.0
    $ L{\text{/m}} $ 0.15 $ {L_{\text{s}}}{\text{/m}} $ 0.20
    $ {\lambda _{\text{1}}} $ 0.001 $ {\lambda _{\text{2}}} $ 0.005
    $ {\lambda _{\text{3}}} $ 0.05 $ {\lambda _{\text{4}}} $ 0.05
    下载: 导出CSV

    表  2  偏转跟踪实验动态性能指标

    Table  2.   Dynamic performance index of deflection tracking experiment

    控制系统调节时间/s响应时间/s超调量/%
    PID2.560.8112.7
    IMC0.470.330
    下载: 导出CSV

    表  3  平动跟踪实验动态性能指标

    Table  3.   Dynamic performance index of translation tracking experiment

    控制系统调节时间/s响应时间/s超调量/%
    PID2.781.358.3
    IMC1.250.970
    下载: 导出CSV
  • [1] 刘磊. 航天器主动隔振及精确定向控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LIU L. Research on active vibration isolation and precise orientation control technology of spacecraft[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [2] 邓瑞清, 赵岩, 房建成, 等. 磁悬浮飞轮与机械飞轮干扰特性的对比分析[J]. 宇航学报, 2016, 37(8): 917-923.

    DENG R Q, ZHAO Y, FANG J C, et al. Disturbance characteristics analysis of magnetically suspended and mechanical flywheels[J]. Journal of Astronautics, 2016, 37(8): 917-923(in Chinese).
    [3] 崔培玲, 盖玉欢, 房建成, 等. 主被动磁悬浮转子的不平衡振动自适应控制[J]. 光学 精密工程, 2015, 23(1): 122-131. doi: 10.3788/OPE.20152301.0122

    CUI P L, GAI Y H, FANG J C, et al. Adaptive control for unbalance vibration of active-passive hybrid magnetically suspended rotor[J]. Optics and Precision Engineering, 2015, 23(1): 122-131(in Chinese). doi: 10.3788/OPE.20152301.0122
    [4] 张激扬, 刘虎, 王虹, 等. 飞轮扰振特性及振动控制方法[J]. 空间控制技术与应用, 2014, 40(5): 1-7,18. doi: 10.3969/j.issn.1674-1579.2014.05.001

    ZHANG J Y, LIU H, WANG H, et al. Microvibration characteristics of flywheels and its vibration control approaches[J]. Aerospace Control and Application, 2014, 40(5): 1-7,18(in Chinese). doi: 10.3969/j.issn.1674-1579.2014.05.001
    [5] RAHMAN Z H, SPANOS J T, LASKIN R A. Multiaxis vibration isolation, suppression, and steering system for space observational applications[C]//Proc. SPIE 3351, Telescope Control Systems III. 1998: 73-81.
    [6] 周伟勇. 航天器飞轮动力学建模与振动控制研究[D]. 长沙: 国防科学技术大学, 2012.

    ZHOU W Y. Research on dynamic modeling and vibration control of spacecraft flywheel[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
    [7] LIU Q, WANG K, REN Y, et al. Novel repeatable launch locking/unlocking device for magnetically suspended momentum flywheel[J]. Mechatronics, 2018, 54: 16-25. doi: 10.1016/j.mechatronics.2018.07.002
    [8] LEE J J, AHN C B, CHOI J, et al. Development of magnetic bearing system for a new third-generation blood pump[J]. Artificial Organs, 2011, 35(11): 1082-1094. doi: 10.1111/j.1525-1594.2011.01376.x
    [9] SAITÔ M, FUKUSHIMA K, SATO N, et al. Development of low disturbance magnetic bearing wheel (MBW) with inclined magnetic poles[J]. The Journal of Space Technology and Science, 2005, 25: 48-68.
    [10] 刘彬, 房建成, 刘刚. 一种磁悬浮陀螺飞轮方案设计与关键技术分析[J]. 航空学报, 2011, 32(8): 1478-1487.

    LIU B, FANG J C, LIU G. Design of a magnetically suspended gyrowheel and analysis of key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1478-1487(in Chinese).
    [11] 李佳益. 磁悬浮微框架动量轮动力学建模与仿真研究[D]. 长沙: 国防科学技术大学, 2012.

    LI J Y. Research on dynamic modeling and simulation of momentum wheel of magnetic levitation micro-frame[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
    [12] XIANG B, TANG J Q. Suspension and titling of vernier-gimballing magnetically suspended flywheel with conical magnetic bearing and Lorentz magnetic bearing[J]. Mechatronics, 2015, 28: 46-54. doi: 10.1016/j.mechatronics.2015.04.008
    [13] 刘强, 赵勇, 曹建树, 等. 新型微框架磁悬浮飞轮用洛伦兹力磁轴承[J]. 宇航学报, 2017, 38(5): 481-489. doi: 10.3873/j.issn.1000-1328.2017.05.006

    LIU Q, ZHAO Y, CAO J S, et al. Lorentz magnetic bearing for novel vernier gimballing magnetically suspended flywheel[J]. Journal of Astronautics, 2017, 38(5): 481-489(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.05.006
    [14] 赵勇. 新型洛伦兹力磁轴承磁路设计与分析[D]. 北京: 北京石油化工学院, 2019.

    ZHAO Y. Design and analysis of magnetic circuit of a new Lorentz force magnetic bearing[D]. Beijing: Beijing Institute of Petrochemical Technology, 2019(in Chinese).
    [15] 熊颖, 刘强, 李衡, 等. 新型洛伦兹惯性稳定平台控制器设计与实现[J]. 火力与指挥控制, 2022, 47(1): 140-144. doi: 10.3969/j.issn.1002-0640.2022.01.024

    XIONG Y, LIU Q, LI H, et al. Design and implementation of a new controller for Lorentz inertial stabilized platform[J]. Fire Control & Command Control, 2022, 47(1): 140-144(in Chinese). doi: 10.3969/j.issn.1002-0640.2022.01.024
    [16] 许国锋, 蔡远文, 任元, 等. 洛伦兹力磁轴承磁密均匀度设计与分析[J]. 北京麻豆精品秘 国产传媒学报, 2017, 43(3): 559-566.

    XU G F, CAI Y W, REN Y, et al. Design and analysis on uniformity of magnetic flux density in Lorentz force-type magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 559-566(in Chinese).
    [17] 熊颖. 新型洛伦兹悬浮定位台控制技术研究[D]. 北京: 北京石油化工学院, 2022.

    XIONG Y. Research on control technology of new Lorenz suspension positioning table[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022(in Chinese).
    [18] GERLACH B, EHINGER M, RAUE H K, et al. Gimballing magnetic bearing reaction wheel with digital controller[C]//The 6th International ESA Conference on Guidance, Navigation and Control Systems[S.l.]:[s.n.]. 2005: 35-40.
    [19] 杨磊, 李建普, 杜金龙, 等. 一种径向磁轴承结构及包含该结构的多自由度磁悬浮机构: CN111828475A[P]. 2020-10-27.

    YANG L, LI J P, DU J L, et al. Radial magnetic bearing and multi-axis levitation system:CN111828475A[P]. 2020-10-27(in Chinese).
    [20] XIANG B, LIU H, YU Y J. Gimbal effect of magnetically suspended flywheel with active deflection of Lorentz-force magnetic bearing[J]. Mechanical Systems and Signal Processing, 2022, 173: 109081. doi: 10.1016/j.ymssp.2022.109081
    [21] 张伟, 赵艳彬, 廖鹤, 等. 动静隔离、主从协同控制双超卫星平台设计[J]. 上海航天, 2014, 31(5): 7-11,30.

    ZHANG W, ZHAO Y B, LIAO H, et al. Design of an active-quiet isolated and master-slave coordination controlled dual-super satellite platform[J]. Aerospace Shanghai, 2014, 31(5): 7-11,30(in Chinese).
    [22] 唐忠兴, 姚闯, 何闻, 等. 高精度非接触磁浮机构设计及其输出特性测试研究[J]. 上海航天(中英文), 2020, 37(1): 135-141,149.

    TANG Z X, YAO C, HE W, et al. Research on high-precision non-contact maglev device design and its output characteristic test[J]. Aerospace Shanghai (Chinese & English), 2020, 37(1): 135-141,149(in Chinese).
    [23] 李峥, 赵艳彬, 姚闯, 等. 双超卫星平台柔性线缆构型设计与仿真[J]. 上海航天(中英文), 2022, 39(4): 170-176.

    LI Z, ZHAO Y B, YAO C, et al. Configuration design and simulation of flexible cables for dual-super satellite platform[J]. Aerospace Shanghai (Chinese & English), 2022, 39(4): 170-176(in Chinese).
    [24] 王有懿, 汤亮, 何英姿. 超静平台隔振与指向一体化控制方法[J]. 航天控制, 2016, 34(6): 33-39.

    WANG Y Y, TANG L, HE Y Z. Integrated control method for vibration isolation and pointing control of ultra quiet platform[J]. Aerospace Control, 2016, 34(6): 33-39(in Chinese).
    [25] 赵同爽, 张激扬, 王英广, 等. 磁悬浮旋转关节建模及解耦控制方法研究[J]. 空间控制技术与应用, 2022, 48(2): 71-79.

    ZHAO T S, ZHANG J Y, WANG Y G, et al. Modeling and decoupling control method of magnetically levitated rotary joints[J]. Aerospace Control and Application, 2022, 48(2): 71-79(in Chinese).
    [26] 张井岗, 李临生. 一种二自由度内模控制方法[J]. 工业仪表与自动化装置, 2002(4): 63-65.

    ZHANG J G, LI L S. A control method performed by a two-degree-of-freedom internal model[J]. Industrial Instrumentation & Automation, 2002(4): 63-65(in Chinese).
    [27] PENG C, FANG J C, XU X B. Mismatched disturbance rejection control for voltage-controlled active magnetic bearing via state-space disturbance observer[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2753-2762. doi: 10.1109/TPEL.2014.2352366
    [28] KANG M S, LYOU J, LEE J K. Sliding mode control for an active magnetic bearing system subject to base motion[J]. Mechatronics, 2010, 20(1): 171-178. doi: 10.1016/j.mechatronics.2009.09.010
    [29] 张玉涵, 蓝益鹏. 磁悬浮平台直线同步电动机TS型模糊控制的研究[J]. 电机与控制应用, 2021, 48(10): 1-6,13.

    ZHANG Y H, LAN Y P. Research on TS fuzzy control of linear synchronous motor for maglev platform[J]. Electric Machines & Control Application, 2021, 48(10): 1-6,13(in Chinese).
    [30] HOWZE J W, BHATTACHARYYA S P. Robust tracking, error feedback, and two-degree-of-freedom controllers[J]. IEEE Transactions on Automatic Control, 1997, 42(7): 980-983. doi: 10.1109/9.599977
    [31] 房建成, 孙津济, 樊亚洪. 磁悬浮惯性动量轮技术[M]. 北京: 国防工业出版社, 2012: 279-280.

    FANG J C, SUN J J, FAN Y H. Magnetically suspended inertial momentum wheel technology[M]. Beijing: National Defense Industry Press, 2012: 279-280(in Chinese).
    [32] 夏长峰, 蔡远文, 任元, 等. 磁悬浮控制敏感陀螺转子前馈解耦内模控制[J]. 北京麻豆精品秘 国产传媒学报, 2018, 44(3): 480-488.

    XIA C F, CAI Y W, REN Y, et al. Feedforward decoupling and internal model control for rotor of magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 480-488(in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  24
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-09-01
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答