Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling
-
摘要:
基于准线性化隐式气弹建模方法,建立适用于分布式多旋翼/倾转机翼飞行器的耦合柔性多体动力学模型,研究其气弹耦合动力学特性。基于中等变形梁模型和准定常理论,采用Pitt-Peters动态入流模型和Floquet理论,建立求解多旋翼/大展弦比柔性倾转机翼气弹耦合系统动特性的计算方法。在验证理论模型正确性的基础上,研究分布式多旋翼/倾转机翼耦合系结构动特性、回转颤振特性和气弹耦合动响应特性。结果表明:旋翼和短舱对机翼扭转模态影响最大,旋翼与机翼耦合情况下会加大旋翼整体模态振型;增加旋翼个数并将升力桨展开可提高系统低速状态下的稳定性,但增加旋翼个数会降低机翼扭转频率,进而降低颤振速度,增加旋翼有效迎角和机翼攻角可提高系统颤振速度,而增加旋翼转速则会降低系统颤振速度;随前飞速度增加,系统先发生机翼扭转失稳后发生机翼弦向弯曲失稳的回转颤振现象,系统振动响应经历了振动收敛、小幅极限环颤振和大幅多频极限环颤振,其中,机翼颤振形式是垂向、弦向弯曲和扭转运动耦合,其三维耦合效应显著,而旋翼与机翼的模态耦合程度也在不断加深。
Abstract:Based on the quasi-linear implicit aeroelastic modeling method, a coupled flexible multibody dynamics model suitable for distributed multi-rotor/tilting wing aircraft was established, and its aeroelastic coupling dynamics characteristics were studied. Based on the moderately deformed beam model and quasi-steady theory, the Pitt-Peters dynamic inflow model and Floquet theory were used to establish a calculation method for solving the dynamic characteristics of the aeroelastic coupling system of the multi-rotor/high aspect ratio flexible tilting wing. On the basis of verifying the correctness of the theoretical model, the dynamic characteristics of the distributed multi-rotor/tilting wing coupling system, the whirl flutter characteristics, and the dynamic response characteristics of aeroelastic coupling were studied. The results show that the rotor and the nacelle have the greatest influence on the torsional mode of the wing, and the coupling between the rotor and the wing will increase the overall mode shape of the rotor; increasing the number of rotors and deploying the lift blades can improve the stability of the system at low speed. However, increasing the number of rotors will reduce the torsional frequency of the wings and thus reduce the flutter speed; increasing the effective angle of attack of the rotors and the angle of attack of the wings can increase the flutter speed of the system, and increasing the rotor speed will reduce the flutter speed of the system; as the flying speed increases, the system first occurs the torsional instability of the wing and then the chordwise bending instability of the wing. The vibration response of the system has experienced vibration convergence, small-amplitude limit-cycle flutter, and large-scale multi-frequency limit-cycle flutter. The form of wing flutter is the coupling of vertical and chordwise bending and torsional motion, and its three-dimensional coupling effect is remarkable. The degree of modal coupling between the rotor and the wing is also deepening.
-
表 1 XV-15倾转旋翼机主要动力学参数
Table 1. Main dynamics parameters of XV-15 tilt-rotor
部件 参数 数值 旋翼 片数 3 洛克数 3.83 半径/m 3.82 预锥角/(º) 2.5 转速/(r·min−1) 458 机翼/短舱 一阶垂向弯曲频率q1/Hz 2.4 一阶弦向弯曲频率q2/Hz 5.1 一阶扭转频率p1/Hz 5.9 表 2 耦合系统主要动力学参数
Table 2. Main dynamics parameters of coupling system
参数 数值 旋翼半径R/m 0.7 旋翼片数 4 额定转速Ω /(r·min−1) 1300 短舱质量mp/kg 3.8 短舱长度h/m 0.35 机翼半展长RW/m 4 推进桨一阶挥舞$\beta^{\;t}_{1} $频率/Hz 33.75 升力桨一阶挥舞$\beta^{\;{\mathrm{s}}}_{1} $频率/Hz 42.25 一阶垂向弯曲q1耦合频率/Hz 3.68 一阶弦向弯曲q2耦合频率/Hz 9.97 二阶垂向弯曲q3耦合频率/Hz 19.07 一阶扭转p1耦合频率/Hz 25.91 表 3 半展系统固有频率
Table 3. Natural frequency of half-spread system
Hz 模态 取值 推进桨一阶挥舞后退型βt−1频率 13.04 推进桨一阶挥舞集合型βt1频率 35.77 升力桨一阶挥舞后退型βs−1频率 18.74 升力桨一阶挥舞集合型βs1频率 40.73 机翼一阶垂向弯曲q1频率 3.337 机翼一阶弦向弯曲q2频率 9.122 机翼二阶垂向弯曲q3频率 16.488 -
[1] BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]//Proceeding of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 3920. [2] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001 [3] PATTERSON M D, GERMAN B. Conceptual design of electric aircraft with distributed propellers: multidisciplinary analysis needs and aerodynamic modeling development[C]//Proceeding of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 0534. [4] MURPHY P C, LANDMAN D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015: 0017. [5] CHAUHAN S S, MARTINS J R R A. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2020, 57(1): 93-112. doi: 10.2514/1.C035476 [6] MURPHY P C, LANDMAN D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing[C]//Proceeding of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015: 0017. [7] BUSAN R C, ROTHHAAR P M, CROOM M A, et al. Enabling advanced wind-tunnel research methods using the NASA langley 12-foot low speed tunnel[C]//Proceeding of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 3000. [8] ROTHHAAR P M, MURPHY P C, BACON B J, et al. NASA Langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development[C]//Proceeding of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 2999. [9] NOLL T E, BROWN J M, PEREZ M E. Investigation of the Helios prototype aircraft mishap[R]. Washington, D.C.: NASA, 2004: 2549. [10] 杨龙. 大展弦比太阳能无人机结构动力学研究[D]. 长沙: 国防科学技术大学, 2013.YANG L. Study on structural dynamic of high aspect ratio solar unmanned aerial vehicle[D]. Changsha: National University of Defense Technology, 2013(in Chinese). [11] PATIL M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999. [12] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal of Aircraft, 2013, 50(6): 1748-1764. doi: 10.2514/1.C032145 [13] 谢长川, 杨超. 大展弦比飞机几何非线性气动弹性稳定性的线性化方法[J]. 中国科学: 技术科学, 2011, 41(3): 385-393. doi: 10.1360/ze2011-41-3-385XIE C C, YANG C. Linearization method for geometrically nonlinear aeroelastic stability of aircraft with high aspect ratio[J]. Scientia Sinica (Technologica), 2011, 41(3): 385-393(in Chinese). doi: 10.1360/ze2011-41-3-385 [14] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.FU Z C, CHEN Z J, LIU Z Q. Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering Mechanics, 2017, 34(4): 231-240(in Chinese). [15] 许余乾. 带外挂细长机翼的非线性气动弹性分析[D]. 哈尔滨: 哈尔滨工业大学, 2019(in Chinese).XU Y Q. Nonlinear aerolastic analysis for slender wing with store [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [16] YEAGER W T, KVATERNIK R G. Contributions of the langley transonic dynamics tunnel to rotorcraft technology and development[C]//Proceadings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Reston: AIAA, 2000: 1971. [17] SRINIVAS V, CHOPRA I. Formulation of a comprehensive aeroelastic analysis for tiltrotor aircraft[C]//Proceeding of the 37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996: 1546. [18] SLABY J, SMITH E. Aeroelastic stability of folding tiltrotor aircraft in cruise flight with composite wings[C]//Proceeding of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011: 2171. [19] LI Z Q, XIA P Q. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1885-1894. doi: 10.1016/j.cja.2017.09.007 [20] 邓旭东, 胡和平. 倾转旋翼机螺旋颤振稳定性研究[J]. 空气动力学学报, 2018, 36(6): 1041-1046. doi: 10.7638/kqdlxxb-2018.0051DENG X D, HU H P. Study on whirl-flutter stability of a tiltrotor aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(6): 1041-1046(in Chinese). doi: 10.7638/kqdlxxb-2018.0051 [21] 刘泽宇, 招启军, 张夏阳, 等. 倾转机翼无人倾转旋翼机飞行动力学稳定性分析[J]. 飞行力学, 2021, 39(3): 1-7.LIU Z Y, ZHAO Q J, ZHANG X Y, et al. Analysis of flight dynamics stability of unmanned tilt-rotor aircraft with tilting wings[J]. Flight Dynamics, 2021, 39(3): 1-7(in Chinese). [22] ACREE C, PEYRAN R, JOHNSON W. Rotor design options for improving XV-15 whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95. -


下载: