留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式多旋翼/倾转机翼气弹耦合动特性研究

程毅 赵金瑞 黄水林 余智豪 邓旭东

程毅,赵金瑞,黄水林,等. 分布式多旋翼/倾转机翼气弹耦合动特性研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1637-1650 doi: 10.13700/j.bh.1001-5965.2023.0253
引用本文: 程毅,赵金瑞,黄水林,等. 分布式多旋翼/倾转机翼气弹耦合动特性研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(5):1637-1650 doi: 10.13700/j.bh.1001-5965.2023.0253
CHENG Y,ZHAO J R,HUANG S L,et al. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1637-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0253
Citation: CHENG Y,ZHAO J R,HUANG S L,et al. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1637-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0253

分布式多旋翼/倾转机翼气弹耦合动特性研究

doi: 10.13700/j.bh.1001-5965.2023.0253
基金项目: 

直升机动力学全国重点实验室基金(2023-HA-LB-067-08) 

详细信息
    通讯作者:

    E-mail:chengy012@avic.com

  • 中图分类号: V214+.1

Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling

Funds: 

National Key Laboratory Fund of Helicopter Dynamics (2023-HA-LB-067-08) 

More Information
  • 摘要:

    基于准线性化隐式气弹建模方法,建立适用于分布式多旋翼/倾转机翼飞行器的耦合柔性多体动力学模型,研究其气弹耦合动力学特性。基于中等变形梁模型和准定常理论,采用Pitt-Peters动态入流模型和Floquet理论,建立求解多旋翼/大展弦比柔性倾转机翼气弹耦合系统动特性的计算方法。在验证理论模型正确性的基础上,研究分布式多旋翼/倾转机翼耦合系结构动特性、回转颤振特性和气弹耦合动响应特性。结果表明:旋翼和短舱对机翼扭转模态影响最大,旋翼与机翼耦合情况下会加大旋翼整体模态振型;增加旋翼个数并将升力桨展开可提高系统低速状态下的稳定性,但增加旋翼个数会降低机翼扭转频率,进而降低颤振速度,增加旋翼有效迎角和机翼攻角可提高系统颤振速度,而增加旋翼转速则会降低系统颤振速度;随前飞速度增加,系统先发生机翼扭转失稳后发生机翼弦向弯曲失稳的回转颤振现象,系统振动响应经历了振动收敛、小幅极限环颤振和大幅多频极限环颤振,其中,机翼颤振形式是垂向、弦向弯曲和扭转运动耦合,其三维耦合效应显著,而旋翼与机翼的模态耦合程度也在不断加深。

     

  • 图 1  坐标系示意图

    Figure 1.  Coordinate system

    图 2  机翼来流区划分

    Figure 2.  Wing inflow zone division

    图 3  机翼模态频率和阻尼

    Figure 3.  Wing modal frequency and damping

    图 4  分布式多旋翼/倾转机翼飞行器

    Figure 4.  Distributed multi-rotor/tilting wing aircraft

    图 5  旋翼模态振型

    Figure 5.  Rotor mode shape

    图 6  机翼模态振型

    Figure 6.  Wing mode shape

    图 7  旋翼个数和升力桨收放对一阶扭转的影响

    Figure 7.  Influence of number of rotors and lift blade retraction on first order torsion

    图 8  系统模态频率和阻尼

    Figure 8.  System modal frequency and damping

    图 9  垂向弯曲主振型下扭转振型

    Figure 9.  Torsional mode under vertical bending mode

    图 10  系统颤振速度随旋翼有效迎角和转速的变化

    Figure 10.  Variation of system flutter speed with speed and effective angle of attack of rotor

    图 11  系统颤振速度随机翼攻角的变化

    Figure 11.  Variation of system flutter speed with angle of attack of wing

    图 12  分布式多旋翼/倾转机翼飞行器前飞气动力

    Figure 12.  Aerodynamic forces on distributed multi-rotor/tilting wing aircraft in forward flight

    图 13  n3z系统翼尖响应(前飞速度为31 ~32 m/s)

    Figure 13.  Wing tip response of n3z system (forward flight speed 31~32 m/s)

    图 14  翼尖响应相图和PSD图

    Figure 14.  Phase and PSD diagram of wing tip response

    图 15  n3系统翼尖响应(前飞速度为120~150 m/s)

    Figure 15.  Wing tip response of n3 system (forward flight speed 120~150 m/s)

    图 16  扭转响应相图和PSD图

    Figure 16.  Torsional response phase and PSD diagram

    图 17  推进桨响应(前飞速度为120~130 m/s)

    Figure 17.  Propeller response (120~130 m/s)

    图 18  推进桨挥舞响应PSD图

    Figure 18.  PSD diagram of propeller flapping response

    图 19  推进桨挥舞锥度角PSD图

    Figure 19.  PSD diagram of flapping taper angle of propeller

    图 20  推进桨载荷(前飞速度为120~150 m/s)

    Figure 20.  Propeller load (120~150 m/s)

    图 21  推进桨拉力PSD图

    Figure 21.  PSD diagram of Propeller thrust

    表  1  XV-15倾转旋翼机主要动力学参数

    Table  1.   Main dynamics parameters of XV-15 tilt-rotor

    部件 参数 数值
    旋翼 片数 3
    洛克数 3.83
    半径/m 3.82
    预锥角/(º) 2.5
    转速/(r·min−1) 458
    机翼/短舱 一阶垂向弯曲频率q1/Hz 2.4
    一阶弦向弯曲频率q2/Hz 5.1
    一阶扭转频率p1/Hz 5.9
    下载: 导出CSV

    表  2  耦合系统主要动力学参数

    Table  2.   Main dynamics parameters of coupling system

    参数 数值
    旋翼半径R/m 0.7
    旋翼片数 4
    额定转速Ω /(r·min−1 1300
    短舱质量mp/kg 3.8
    短舱长度h/m 0.35
    机翼半展长RW/m 4
    推进桨一阶挥舞$\beta^{\;t}_{1} $频率/Hz 33.75
    升力桨一阶挥舞$\beta^{\;{\mathrm{s}}}_{1} $频率/Hz 42.25
    一阶垂向弯曲q1耦合频率/Hz 3.68
    一阶弦向弯曲q2耦合频率/Hz 9.97
    二阶垂向弯曲q3耦合频率/Hz 19.07
    一阶扭转p1耦合频率/Hz 25.91
    下载: 导出CSV

    表  3  半展系统固有频率

    Table  3.   Natural frequency of half-spread system  Hz

    模态 取值
    推进桨一阶挥舞后退型βt−1频率 13.04
    推进桨一阶挥舞集合型βt1频率 35.77
    升力桨一阶挥舞后退型βs−1频率 18.74
    升力桨一阶挥舞集合型βs1频率 40.73
    机翼一阶垂向弯曲q1频率 3.337
    机翼一阶弦向弯曲q2频率 9.122
    机翼二阶垂向弯曲q3频率 16.488
    下载: 导出CSV
  • [1] BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]//Proceeding of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 3920.
    [2] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001
    [3] PATTERSON M D, GERMAN B. Conceptual design of electric aircraft with distributed propellers: multidisciplinary analysis needs and aerodynamic modeling development[C]//Proceeding of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 0534.
    [4] MURPHY P C, LANDMAN D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015: 0017.
    [5] CHAUHAN S S, MARTINS J R R A. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2020, 57(1): 93-112. doi: 10.2514/1.C035476
    [6] MURPHY P C, LANDMAN D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing[C]//Proceeding of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015: 0017.
    [7] BUSAN R C, ROTHHAAR P M, CROOM M A, et al. Enabling advanced wind-tunnel research methods using the NASA langley 12-foot low speed tunnel[C]//Proceeding of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 3000.
    [8] ROTHHAAR P M, MURPHY P C, BACON B J, et al. NASA Langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development[C]//Proceeding of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 2999.
    [9] NOLL T E, BROWN J M, PEREZ M E. Investigation of the Helios prototype aircraft mishap[R]. Washington, D.C.: NASA, 2004: 2549.
    [10] 杨龙. 大展弦比太阳能无人机结构动力学研究[D]. 长沙: 国防科学技术大学, 2013.

    YANG L. Study on structural dynamic of high aspect ratio solar unmanned aerial vehicle[D]. Changsha: National University of Defense Technology, 2013(in Chinese).
    [11] PATIL M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999.
    [12] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal of Aircraft, 2013, 50(6): 1748-1764. doi: 10.2514/1.C032145
    [13] 谢长川, 杨超. 大展弦比飞机几何非线性气动弹性稳定性的线性化方法[J]. 中国科学: 技术科学, 2011, 41(3): 385-393. doi: 10.1360/ze2011-41-3-385

    XIE C C, YANG C. Linearization method for geometrically nonlinear aeroelastic stability of aircraft with high aspect ratio[J]. Scientia Sinica (Technologica), 2011, 41(3): 385-393(in Chinese). doi: 10.1360/ze2011-41-3-385
    [14] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.

    FU Z C, CHEN Z J, LIU Z Q. Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering Mechanics, 2017, 34(4): 231-240(in Chinese).
    [15] 许余乾. 带外挂细长机翼的非线性气动弹性分析[D]. 哈尔滨: 哈尔滨工业大学, 2019(in Chinese).

    XU Y Q. Nonlinear aerolastic analysis for slender wing with store [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [16] YEAGER W T, KVATERNIK R G. Contributions of the langley transonic dynamics tunnel to rotorcraft technology and development[C]//Proceadings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Reston: AIAA, 2000: 1971.
    [17] SRINIVAS V, CHOPRA I. Formulation of a comprehensive aeroelastic analysis for tiltrotor aircraft[C]//Proceeding of the 37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996: 1546.
    [18] SLABY J, SMITH E. Aeroelastic stability of folding tiltrotor aircraft in cruise flight with composite wings[C]//Proceeding of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011: 2171.
    [19] LI Z Q, XIA P Q. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1885-1894. doi: 10.1016/j.cja.2017.09.007
    [20] 邓旭东, 胡和平. 倾转旋翼机螺旋颤振稳定性研究[J]. 空气动力学学报, 2018, 36(6): 1041-1046. doi: 10.7638/kqdlxxb-2018.0051

    DENG X D, HU H P. Study on whirl-flutter stability of a tiltrotor aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(6): 1041-1046(in Chinese). doi: 10.7638/kqdlxxb-2018.0051
    [21] 刘泽宇, 招启军, 张夏阳, 等. 倾转机翼无人倾转旋翼机飞行动力学稳定性分析[J]. 飞行力学, 2021, 39(3): 1-7.

    LIU Z Y, ZHAO Q J, ZHANG X Y, et al. Analysis of flight dynamics stability of unmanned tilt-rotor aircraft with tilting wings[J]. Flight Dynamics, 2021, 39(3): 1-7(in Chinese).
    [22] ACREE C, PEYRAN R, JOHNSON W. Rotor design options for improving XV-15 whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  128
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 录用日期:  2023-07-16
  • 网络出版日期:  2023-08-02
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答