留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器外壳非预期放电抑制及热特性

李建鹏 靳伍银 赵以德 代鹏 张兴民

李建鹏,靳伍银,赵以德,等. 离子推力器外壳非预期放电抑制及热特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):865-873 doi: 10.13700/j.bh.1001-5965.2023.0162
引用本文: 李建鹏,靳伍银,赵以德,等. 离子推力器外壳非预期放电抑制及热特性[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):865-873 doi: 10.13700/j.bh.1001-5965.2023.0162
LI J P,JIN W Y,ZHAO Y D,et al. Unexpected electric breakdown control and thermal characteristics of ion thruster shell[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):865-873 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0162
Citation: LI J P,JIN W Y,ZHAO Y D,et al. Unexpected electric breakdown control and thermal characteristics of ion thruster shell[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):865-873 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0162

离子推力器外壳非预期放电抑制及热特性

doi: 10.13700/j.bh.1001-5965.2023.0162
基金项目: 

国家自然科学基金(62201238);甘肃省科技计划资助项目(22JR5RA789) 

详细信息
    通讯作者:

    E-mail:ljplzjtedu@163.com

  • 中图分类号: TK124

Unexpected electric breakdown control and thermal characteristics of ion thruster shell

Funds: 

National Natural Science Foundation of China (62201238);Science and Technology Department of Gansu Province Project (22JR5RA789) 

More Information
  • 摘要:

    离子推力器非预期放电直接影响其工程应用可靠性,为降低推力器外壳与屏栅间的非预期放电频率,通过理论分析和试验的方法明确了非预期放电机制,综合考虑降低非预期放电频率和热设计开展了3种方案的外壳优化设计及热特性分析,搭建了外壳验证及热平衡试验系统。结果表明:高功率下非预期放电频率明显高于低功率,采用单面本色阳极化外壳方案后,5 kW工况下,推力器非预期放电频率从优化前6.90次/h降低到0.70次/h,3 kW工况下,从优化前的3.3次/h降低到0.20次/h,电连接器处测温最高温度为148.5 ℃,满足使用要求,不同外壳方案对热敏感性强的栅极组件温度影响较小,温差范围为5 ℃,推力器温度测试和热分析最大误差小于10 ℃。

     

  • 图 1  离子推力器实物图

    Figure 1.  Ion thruster photo

    图 2  离子推力器外壳非预期放电痕迹

    Figure 2.  Traces of unexpected electric breakdown on ion thruster shell

    图 3  离子推力器供电

    Figure 3.  Power supply for ion thruster

    图 4  离子推力器外壳与放电室阳极位置

    Figure 4.  Position between ion thruster shell and anode of discharge chamber

    图 5  离子推力器三维和有限元模型

    Figure 5.  3D model and finite element model of ion thruster

    图 6  离子推力器在5 kW工况下温度应力

    Figure 6.  Temperature stress of ion thruster under 5 kW working condition

    图 7  离子推力器试验系统结构

    Figure 7.  Structure of ion thruster test system

    图 8  不同外壳设计方案与放电频率的关系

    Figure 8.  Relationship between different shell design schemes and electric breakdown frequency

    图 9  外壳绝缘层击穿诱发非预期放电波形

    Figure 9.  Unexpected electric breakdown waveform of shell insulation layer

    图 10  离子推力器不同外壳方案下60 h后外壳表面

    Figure 10.  Shell surface of ion thruster in different schemes after 60 h

    图 11  离子推力器不同外壳方案下电连接器处温度随时间变化

    Figure 11.  Variation of temperature at electrical connector of ion thruster in different schemes with time

    表  1  离子推力器不同外壳设计方案

    Table  1.   Different shell design schemes of ion thruster

    方案 材料 表面处理 质量/kg 厚度/mm
    原方案 2A12铝 双面本色阳极化 0.26 0.5
    方案1 2A12铝 不处理 0.26 0.5
    方案2 2A12铝 单面本色阳极化 0.26 0.5
    方案3 不锈钢网 不处理 0.36 0.3
    下载: 导出CSV

    表  2  离子推力器主要性能参数

    Table  2.   Main performance parameters of ion thruster

    推力/mN 比冲/s 流率/(mg·s−1) 束电压/V 束电流/A 放电电压/V 放电电流/A 功率/kW
    200 3400 2.551 1450 3.68 29.0 24.4 5
    下载: 导出CSV

    表  3  离子推力器热分布

    Table  3.   Heat distribution of ion thruster

    阳极
    热耗/W
    主阴极
    触持热耗/W
    屏栅
    热耗/W
    加速栅
    热耗/W
    主阴极
    发射体温度/ ℃
    中和器
    触持热耗/W
    中和器
    发射体温度/ ℃
    49429.8133291776321400
    下载: 导出CSV

    表  4  离子推力器不同外壳方案发射率吸收率

    Table  4.   Emissivity and absorptivity for different shell schemes of ion thruster

    方案外表面发射率内表面发射率外表面吸收率内表面吸收率
    原方案0.670.680.880.87
    方案10.030.030.190.19
    方案20.750.070.350.15
    方案30.260.260.310.34
    下载: 导出CSV

    表  5  离子推力器在5 kW工况下热分析仿真结果

    Table  5.   Thermal analysis simulation results of ion thruster under 5 kW working condition

    方案 屏栅温度 加速栅温度 减速栅温度 中和器盒温度 后外壳温度 柱段外壳温度 支撑环温度 阳极温度
    原方案 447.1 355.8 246.8 131.4 163.8 155.6 100.8 325.4
    方案1 448.2 362.5 263.5 169.5 210.5 196.6 145.5 352.4
    方案2 449.8 359.1 252.1 153.18 197.8 176.9 129.5 354.7
    方案3 448.1 355.9 249.1 147.2 193.6 176.2 128.8 346.5
    下载: 导出CSV

    表  6  离子推力器电连接器热平衡后最高温度

    Table  6.   Maximum temperature of electrical connector of ion thruster after heat balance

    方案 实验温度 仿真温度
    原方案 138.2 131.40
    方案1 156.2 165.50
    方案2 148.5 153.18
    方案3 141.8 147.20
    下载: 导出CSV
  • [1] 李建鹏, 张天平, 赵以德, 等. 阳极电流和屏栅电压对5kW离子推力器性能的影响[J]. 推进技术, 2021, 42(6): 1435-1440.

    LI J P, ZHANG T P, ZHAO Y D, et al. Effects of anode current and screen grid voltage on performance of 5kW ion thruster[J]. Journal of Propulsion Technology, 2021, 42(6): 1435-1440(in Chinese).
    [2] GOEBEL D M, KATZ I. Fundamentals of electric propulsion ion and Hall thrusters[M]. Hoboken: Wiley, 2008.
    [3] AHMED L N, CROFTON M W. Surface modification measurements in the T5 ion thruster plume[J]. Journal of Propulsion and Power, 1998, 14(3): 336-347. doi: 10.2514/2.5302
    [4] RAWLIN V, SOVEY J, HAMLEY J, et al. An ion propulsion system for NASA’s deep space missions[C]// Space Technology Conference and Exposition. Reston: AIAA, 1999.
    [5] PATTERSON M J, VERHEY T R. A 5kW xenon ion thruster lifetest[C]//International Electric Propulsion Conference Florida. Reston: AIAA, 1990.
    [6] OHMICHI W, KUNINAKA H. Performance degradation of a spacecraft electron cyclotron resonance neutralizer and its mitigation[J]. Journal of Propulsion and Power, 2014, 30(5): 1368-1372. doi: 10.2514/1.B35062
    [7] HERMAN D, SOULAS G, PATTERSON M. Performance evaluation of the prototype-model NEXT ion thruster[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
    [8] MARTINEZ R A, WILLIAMS J D. Electric field breakdown characteristics of carbon-based ion optics[C]//Proceedings of the 29th International Electric Propulsion Conference. Reston: AIAA, 2005.
    [9] 李建鹏, 靳伍银, 赵以德, 等. 离子推力器外壳非预期放电抑制实验研究[J]. 推进技术, 2023, 44(4): 264-271.

    LI J P, JIN W Y, ZHAO Y D, et al. Experimental study of unexpected breakdown reduction of ion thruster housings[J]. Journal of Propulsion Technology, 2023, 44(4): 264-271(in Chinese).
    [10] SHASTRY R,HERMAN D A, SOULAS G C, et al. Status of NASA’s Evolutionary Xenon Thruster(NEXT) long duration test as of 50000 h and 900 kg throughput: IEPC 2013-121[R]. Washington, D.C.: NASA, 2013-10-06.
    [11] VAN NOORD J L. Lifetime assessment of the next ion thruster[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
    [12] WALLACE N, MUNDY D, FEARN D, et al. Evaluation of the performance of the T6 ion thruster[C]//Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999.
    [13] CLARK S, RANDALL P, LEWIS R, et al. Bepicolombo-solar electric propulsion system test and qualification approach[C]//Proceedings of the 36th International Electric Propulsion Conference. Reston: AIAA, 2019.
    [14] KUNINAKA H, SHIMIZU Y, YAMADA T, et al. Flight report during two years on HAYABUSA explorer propelled by microwave discharge ion engines[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
    [15] KUNINAKA H, NISHIYAMA K, FUNAKI I, et al. Powered flight of HAYABUSA in deep space[C]//Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
    [16] MARTINEZ R, WILLIAMS J, GOEBEL D. Electric field breakdown properties of materials used in ion optics systems[C]//Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
    [17] SCHWIRZKE F R. Vacuum breakdown on metal surfaces[J]. IEEE Transactions on Plasma Science, 2002, 19(5): 690-696.
    [18] SILI E, CAMBRONNE J P, KOLIATENE F. Temperature dependence of electrical breakdown mechanism on the left of the paschen minimum[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 3173-3179. doi: 10.1109/TPS.2011.2165969
    [19] PEJOVIC M M, RISTIC G S, KARAMARKOVIC J P. Electrical breakdown in low pressure gases[J]. Journal of Physics D: Applied Physics, 2002, 35(10): R91-R103. doi: 10.1088/0022-3727/35/10/201
    [20] ANDERS A. Breakdown of the high-voltage sheath in metal plasma immersion ion implantation[J]. Applied Physics Letters, 2000, 76(1): 28-30. doi: 10.1063/1.125645
    [21] 李宗良, 高俊, 刘国西, 等. 小行星探测电推进系统方案研究[J]. 深空探测学报, 2018, 5(4): 347-353.

    LI Z L, GAO J, LIU G X, et al. Study on the electric propulsion system for asteroid detection[J]. Journal of Deep Space Exploration, 2018, 5(4): 347-353(in Chinese).
    [22] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响[J]. 物理学报, 2022, 71(1): 172-179.

    LI J P, JIN W Y, ZHAO Y D. Influence of acceleration grid voltage and anode flow rate on performance of ion thruster[J]. Acta Physica Sinica, 2022, 71(1): 172-179(in Chinese).
    [23] 孙明明, 张天平, 陈娟娟, 等. LIPS-200离子推力器热特性模拟分析研究[J]. 强激光与粒子束, 2014, 26(8): 252-257.

    SUN M M, ZHANG T P, CHEN J J, et al. Thermal analysis of LIPS-200 ion thruster[J]. High Power Laser and Particle Beams, 2014, 26(8): 252-257(in Chinese).
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  86
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 录用日期:  2023-07-15
  • 网络出版日期:  2023-08-30
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答