留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合注意力和多尺度特征的航空发动机缺陷检测

赵崇林 朱江 胡永进 李祖泽 王鹏举 谢涛

赵崇林,朱江,胡永进,等. 融合注意力和多尺度特征的航空发动机缺陷检测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):892-903 doi: 10.13700/j.bh.1001-5965.2023.0147
引用本文: 赵崇林,朱江,胡永进,等. 融合注意力和多尺度特征的航空发动机缺陷检测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):892-903 doi: 10.13700/j.bh.1001-5965.2023.0147
ZHAO C L,ZHU J,HU Y J,et al. Aero-engine defect detection by fusing attention and multi-scale features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):892-903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0147
Citation: ZHAO C L,ZHU J,HU Y J,et al. Aero-engine defect detection by fusing attention and multi-scale features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):892-903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0147

融合注意力和多尺度特征的航空发动机缺陷检测

doi: 10.13700/j.bh.1001-5965.2023.0147
详细信息
    通讯作者:

    E-mail:77183118@qq.com

  • 中图分类号: TP391.4

Aero-engine defect detection by fusing attention and multi-scale features

More Information
  • 摘要:

    航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确的定位和识别。实验结果表明:所提算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0 M。因此,所提算法可以有效地检测航空发动机的主要缺陷。

     

  • 图 1  航空发动机的3类缺陷示例

    Figure 1.  Three classes of defects in aero-engines

    图 2  小样本缺陷的数据增强过程

    Figure 2.  Data augmentation process for small sample defects

    图 3  应用不同数据增强方法的直观化结果

    Figure 3.  Visualization results using different data augmentation methods

    图 4  YOLOv5s的网络结构

    Figure 4.  Network structure of YOLOv5s

    图 5  本文算法的整体框架

    Figure 5.  Overall framework of the proposed algorithm

    图 6  协调注意力模块的结构

    Figure 6.  Structure of coordination attention module

    图 7  协调注意力模块的不同融入位置

    Figure 7.  Different integration positions of coordination attention module

    图 8  颈部网络的不同结构

    Figure 8.  Different structures of neck network

    图 9  EIOU损失的边界框回归示意图

    Figure 9.  Bounding box regression for EIOU loss

    图 10  改进后模型和原始模型的mAP和损失曲线比较

    Figure 10.  Comparison of mAP and loss curves between improved model and original model

    图 11  改进后模型和基线模型的实际检测效果

    Figure 11.  Comparison of actual detection effects between improved model and baseline model

    图 12  改进后模型和基线模型的热力图可视化结果

    Figure 12.  Visualization results of heat map of improved model and baseline model

    图 13  不同模型的实际检测效果

    Figure 13.  Comparison of actual detection effects of different models

    表  1  环境配置细节

    Table  1.   Environment configuration details

    配置 类型
    Operating System Windows 10
    CPU Intel Core i5-12400
    GPU NVIDIA GeForce RTX 3070 Ti, 8 GB
    Pytorch Version 1.10.1
    CUDA Version 11.3
    cuDNN Version 8.2.0
    PyThon Version 3.18.13
    OpenCV Version 4.6.0.66
    下载: 导出CSV

    表  2  改进后模型和原始模型的检测性能结果

    Table  2.   Test performance results of improved model and original model

    模型 P/% R/% mAP/%
    YOLOv5 79.6 86.5 83.4
    改进 1 86.8 89.3 89.1
    改进 2 87.9 89.6 89.7
    改进 3 85.5 88.8 88.0
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Results of ablation experiment

    数据增强 CA BiFPN EIOU AP/% mAP/% 检测帧率/(帧·s−1)
    氧化 裂纹 缺失
    88.5 75.6 86.0 83.4 169.5
    88.4 81.8 88.1 86.1 169.5
    90.7 83.8 88.8 87.8 166.7
    91.7 85.3 89.9 89.0 156.3
    92.2 86.2 90.8 89.7 156.3
    下载: 导出CSV

    表  4  注意力机制不同融入位置的准确性结果

    Table  4.   Accuracy results of different integration positions of attention mechanism

    位置 P/% R/% mAP/%
    无注意力 82.7 86.7 86.1
    位置 1 85.0 87.9 87.3
    位置 2 85.4 88.1 87.8
    位置 3 82.5 87.2 85.8
    下载: 导出CSV

    表  5  颈部网络不同结构的检测结果

    Table  5.   Detection results of different structures of neck network

    结构 mAP/% 权重大小/MB 检测帧率/(帧·s−1)
    FPN+PAN 86.1 13.7 169.5
    4尺度预测头 87.2 14.6 143.2
    BiFPN 87.5 13.9 162.6
    下载: 导出CSV

    表  6  不同损失函数的测试结果

    Table  6.   Test results of different loss functions

    损失函数 AP/% mAP/%
    氧化 裂纹 缺失
    GIOU 87.7 80.8 87.1 85.2
    DIOU 88.6 81.1 87.2 85.7
    CIOU 88.4 81.8 88.1 86.1
    EIOU 89.5 83.6 88.8 87.3
    下载: 导出CSV

    表  7  不同模型的测试结果

    Table  7.   Test results of different models

    模型 mAP/% 检测帧率/(帧·s−1) 权重大小/MB
    SSD 78.0 119.3 91.6
    Faster R-CNN 82.5 29.8 521.6
    RetinaNet 83.6 45.1 139.1
    YOLOv5 86.1 169.5 13.7
    本文模型 89.7 156.3 14.0
    下载: 导出CSV
  • [1] PITKÄNEN J, HAKKARAINEN T, JESKANEN H, et al. NDT methods for revealing anomalies and defects in gas turbine blades[J]. Insight, 2001, 43: 601-604.
    [2] ZOU F Q. Review of aero-engine defect detection technology[C]//Proceedings of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 1524-1527.
    [3] 旷可嘉. 深度学习及其在航空发动机缺陷检测中的应用研究[D]. 广州:华南理工大学, 2017.

    KUANG K J. Research on deep learning and its application on the defects detection for aero engine[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
    [4] MALEKZADEH T, ABDOLLAHZADEH M, NEJATI H, et al. Aircraft fuselage defect detection using deep neural networks[J]. ArXiv e-Prints, 2017: arXiv: 1712.09213.
    [5] KIM Y H, LEE J R. Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing[J]. Structural Health Monitoring, 2019, 18(5-6): 2020-2039. doi: 10.1177/1475921719830328
    [6] LI D W, LI Y D, XIE Q, et al. Tiny defect detection in high-resolution aero-engine blade images via a coarse-to-fine framework[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70: 3062175.
    [7] 李龙浦. 基于孔探数据的航空发动机叶片损伤识别研究[D]. 天津:中国民航大学, 2020.

    LI L P. Research on damage identification of aeroengine blades based on borescope data[D]. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [8] 李彬, 汪诚, 丁相玉, 等. 改进YOLOv4的表面缺陷检测算法[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(3): 710-717.

    LI B, WANG C, DING X Y, et al. Surface defect detection algorithm based on improved YOLOv4[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 710-717(in Chinese).
    [9] 陈为, 梁晨红. 基于改进SSD的航空发动机目标缺陷检测[J]. 控制工程, 2021, 28(12): 2329-2335.

    CHEN W, LIANG C H. Aeroengine target defect detection based on improved SSD[J]. Control Engineering of China, 2021, 28(12): 2329-2335(in Chinese).
    [10] 樊玮, 李晨炫, 邢艳, 等. 航空发动机损伤图像的二分类到多分类递进式检测网络[J]. 计算机应用, 2021, 41(8): 2352-2357.

    FAN W, LI C X, XING Y, et al. Binary classification to multiple classification progressive detection network for aero-engine damage images[J]. Journal of Computer Applications, 2021, 41(8): 2352-2357(in Chinese).
    [11] HUANG R, DUAN B K, ZHANG Y X, et al. Prior-guided GAN-based interactive airplane engine damage image augmentation method[J]. Chinese Journal of Aeronautics, 2022, 35(10): 222-232. doi: 10.1016/j.cja.2021.11.021
    [12] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2020: 1571-1580.
    [13] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2015: 1904-1916.
    [14] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [16] YING Z P, LIN Z T, WU Z Y, et al. A modified-YOLOv5s model for detection of wire braided hose defects[J]. Measurement, 2022, 190: 110683. doi: 10.1016/j.measurement.2021.110683
    [17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [18] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13708-13717.
    [19] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020.
    [20] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506146-157.
    [21] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 618-626.
    [22] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37.
    [23] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 1137-1149.
    [24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 16th IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  156
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-05-06
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答