留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等边Bennett机构的变形翼机构设计与分析

田大可 张珺威 金路 刘荣强 雷宏强 崔锡赫

田大可,张珺威,金路,等. 基于等边Bennett机构的变形翼机构设计与分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):742-752 doi: 10.13700/j.bh.1001-5965.2023.0139
引用本文: 田大可,张珺威,金路,等. 基于等边Bennett机构的变形翼机构设计与分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(3):742-752 doi: 10.13700/j.bh.1001-5965.2023.0139
TIAN D K,ZHANG J W,JIN L,et al. Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):742-752 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0139
Citation: TIAN D K,ZHANG J W,JIN L,et al. Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):742-752 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0139

基于等边Bennett机构的变形翼机构设计与分析

doi: 10.13700/j.bh.1001-5965.2023.0139
基金项目: 

国家自然科学基金联合基金(U2341237);宇航空间机构全国重点实验室开放课题;辽宁省教育厅基本科研项目(LJ222410153096,JYTMS20231592) 

详细信息
    通讯作者:

    E-mail:jinlu@sjzu.edu.cn

  • 中图分类号: V224

Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism

Funds: 

Joint Funds of the National Natural Science Foundation of China (U2341237); Open Project of National Key Laboratory of Aerospace Mechanism; Foundation of Educational Department of Liaoning Province (LJ222410153096,JYTMS20231592) 

More Information
  • 摘要:

    变体飞行器是一种通过变形机构改变自身气动外形,以适应多种飞行环境与任务要求的新概念飞行器,在航空航天、军事侦察等领域具有重要的应用价值,是未来飞行器研究的前沿与热点。针对变体飞行器广空域、宽速域等新的发展需求,基于等边Bennett机构提出一种具有空间多回路闭链特征的展向弯曲变形翼机构。研究等边Bennett机构的几何特性,提出基于等边Bennett机构的多回路闭环变形翼机构设计方案;采用约束螺旋求解法对变形翼机构自由度进行求解,基于D-H坐标变换法建立运动学模型;建立机构三维模型及虚拟样机,并进行运动学仿真验证,制作样机并进行实验。研究结果表明:所提的变形翼机构仅需一个动力源即可驱动机构运动,结构简单、模块化率高;能够实现各零部件间的准确连接及预期的展向弯曲变形动作。研究成果为新型变体飞行器变形翼的基础研究及工程应用提供了借鉴与参考。

     

  • 图 1  等边Bennett机构示意图

    Figure 1.  Schematic of equilateral Bennett mechanism

    图 2  等边Bennett机构参数关系

    Figure 2.  Parameter relationship of equilateral Bennett mechanism

    图 3  变形翼机构示意图

    Figure 3.  Schematic of morphing wing mechanism

    图 4  3种变形机构回路结构

    Figure 4.  Loop structures of three kinds of morphing mechanism

    图 5  变形机构回路位置分布

    Figure 5.  Location distribution of morphing mechanism loop

    图 6  各组件位置分布

    Figure 6.  Distribution of each component location

    图 7  变形翼机构三维模型

    Figure 7.  3D model of morphing wing mechanism

    图 8  变形翼机构原理示意图

    Figure 8.  Principle of morphing wing mechanism

    图 9  变形翼结构示意图(包含翼肋)

    Figure 9.  Schematic of morphing wing structure (including wing rib)

    图 10  变体飞行器结构示意图

    Figure 10.  Schematic of morphing aircraft structure

    图 11  等边Bennett机构约束螺旋参数

    Figure 11.  Constrained spiral parameters of equilateral Bennett mechanism

    图 12  变形翼机构模块组合示意图

    Figure 12.  Schematic of morphing wing mechanism module combination

    图 13  带有同步驱动机构的平面机构回路示意图

    Figure 13.  Schematic of planar mechanism loop with synchronous drive mechanism

    图 14  空间六杆机构D-H坐标系

    Figure 14.  D-H coordinate system of space six-bar mechanism

    图 15  2组空间六杆机构组合示意图

    Figure 15.  Combination of two groups of space six-bar mechanism

    图 16  变形翼机构虚拟样机

    Figure 16.  Virtual prototype of morphing wing mechanism

    图 17  各特征点位置

    Figure 17.  Location of each feature point

    图 18  虚拟样机末端点运动轨迹

    Figure 18.  End point movement trajectory of virtual prototype

    图 19  末端点运动轨迹仿真对比

    Figure 19.  Simulation comparison of end point movement trajectories

    图 20  变形翼机构变形过程

    Figure 20.  Deformation process of morphing wing mechanism

    图 21  向上弯曲变形升力方向位移曲线

    Figure 21.  Lift direction displacement curves in upward bending

    图 22  特征点速度曲线

    Figure 22.  Velocity curves of feature points

    图 23  特征点加速度曲线

    Figure 23.  Acceleration curves of feature points

    图 24  特征点角加速度曲线

    Figure 24.  Angular acceleration curves of feature points

    图 25  变形翼机构原理样机零件

    Figure 25.  Parts of morphing wing mechanism prototype

    图 26  变形翼机构原理样机

    Figure 26.  Morphing wing mechanism prototype

    图 27  变形翼机构原理样机变形实验

    Figure 27.  Deformation experiment of morphing wing mechanism prototype

    表  1  空间六杆机构D-H参数

    Table  1.   D-H parameters of space six-bar mechanism

    i ai αi di ϕi
    1 l αi 0 ϕ1
    2 l π−αi 0 ϕ2
    3 l 0 0 ϕ3
    4 l 0 0 ϕ4
    下载: 导出CSV
  • [1] 周文雅, 张宗宇, 王晓明, 等. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报, 2021, 57(2): 121-138. doi: 10.3901/JME.2021.02.121

    ZHOU W Y, ZHANG Z Y, WANG X M, et al. Research progress and key techniques of active morphing wing at medium and small scales[J]. Journal of Mechanical Engineering, 2021, 57(2): 121-138(in Chinese). doi: 10.3901/JME.2021.02.121
    [2] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682
    [3] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. doi: 10.1016/j.cja.2021.09.013
    [4] KAO J Y, CLARK D L, WHITE T, et al. Conceptual multidisciplinary design and optimization of morphing aircraft: AIAA-2019-0175[R]. Reston: AIAA, 2019.
    [5] GUO J B, ZHAO C J, SONG Z G. Discussion on research status and key technologies of morphing aircraft[C]//Proceedings of the International Conference on Mechatronics Technology and Aerospace Engineering. Bristol: IOP Publishing, 2021: 24-26.
    [6] 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. doi: 10.7527/S1000-6893.2022.27449

    RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449(in Chinese). doi: 10.7527/S1000-6893.2022.27449
    [7] NEAL A D. Design, development, and analysis of a morphing aircraft model for wind tunnel experimentation[D]. Blacksburg: Virginia Polytechnic Institute, 2006.
    [8] FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1: AIAA-2007-1707[R]. Reston: AIAA, 2007.
    [9] YOUNG T M, HIRST M. Innovation in aeronautics[M]. [S.l.]: Woodhead Publishing, 2012: 37-55.
    [10] MANZO J, GARCIA E. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism[J]. Smart Materials and Structures, 2010, 19(2): 025012. doi: 10.1088/0964-1726/19/2/025012
    [11] LAZOS B S. Biologically inspired fixed-wing configuration studies[J]. Journal of Aircraft, 2005, 42(5): 1089-1098. doi: 10.2514/1.10496
    [12] WANG Q, CHEN Y, TANG H. Mechanism design for aircraft morphing wing: AIAA-2012-1608[R]. Reston: AIAA, 2012.
    [13] GRANT D T, ABDULRAHIM M, LIND R. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[J]. International Journal of Micro Air Vehicles, 2010, 2(2): 91-106. doi: 10.1260/1756-8293.2.2.91
    [14] MOOSAVIAN A, XI F F, HASHEMI S M. Design and motion control of fully variable morphing wings[J]. Journal of Aircraft, 2013, 50(4): 1189-1201. doi: 10.2514/1.C032127
    [15] 陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013, 31(1): 40-46.

    CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica, 2013, 31(1): 40-46(in Chinese).
    [16] 王云飞, 肖洪, 杨广, 等. 平行连杆式变形翼结构设计及分布式驱动配置[J]. 哈尔滨工业大学学报, 2022, 54(1): 65-72. doi: 10.11918/202011032

    WANG Y F, XIAO H, YANG G, et al. Structure design and distributed actuators configuration of a parallel linkage morphing wing[J]. Journal of Harbin Institute of Technology, 2022, 54(1): 65-72(in Chinese). doi: 10.11918/202011032
    [17] 肖洪, 郭宏伟, 张蒂, 等. 一种基于四面体单元的变形翼骨架设计与分析[J]. 航空学报, 2022, 43(7): 425391. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207031

    XIAO H, GUO H W, ZHANG D, et al. Design and analysis of morphing wing skeleton based on tetrahedral element[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425391(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207031
    [18] JACOB J, SMITH S. Design limitations of deployable wings for small low altitude UAVs: AIAA-2009-745[R]. Reston: AIAA, 2009.
    [19] PERKINS D, REED J, HAVENS E. Morphing wing structures for loitering air vehicles: AIAA-2004-1888[R]. Reston: AIAA, 2004.
    [20] KOTA S. Twistable wings take flight[J]. IEEE Spectrum, 2016, 53: 28-33.
    [21] SONG X K, GUO H W, LIU S J, et al. Cable-truss hybrid double-layer deployable mechanical network constructed of Bennett linkages and planar symmetric four-bar linkages[J]. Mechanism and Machine Theory, 2019, 133: 459-480. doi: 10.1016/j.mechmachtheory.2018.12.003
    [22] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 121-137.

    HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 121-137(in Chinese).
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  166
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-05-12
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答