Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism
-
摘要:
变体飞行器是一种通过变形机构改变自身气动外形,以适应多种飞行环境与任务要求的新概念飞行器,在航空航天、军事侦察等领域具有重要的应用价值,是未来飞行器研究的前沿与热点。针对变体飞行器广空域、宽速域等新的发展需求,基于等边Bennett机构提出一种具有空间多回路闭链特征的展向弯曲变形翼机构。研究等边Bennett机构的几何特性,提出基于等边Bennett机构的多回路闭环变形翼机构设计方案;采用约束螺旋求解法对变形翼机构自由度进行求解,基于D-H坐标变换法建立运动学模型;建立机构三维模型及虚拟样机,并进行运动学仿真验证,制作样机并进行实验。研究结果表明:所提的变形翼机构仅需一个动力源即可驱动机构运动,结构简单、模块化率高;能够实现各零部件间的准确连接及预期的展向弯曲变形动作。研究成果为新型变体飞行器变形翼的基础研究及工程应用提供了借鉴与参考。
Abstract:Morphing aircraft is a new concept vehicle that changes its aerodynamic shape by a morphing mechanism to adapt to various flight environments and mission requirements, which has important application value in aerospace, military reconnoitre, and other fields and is the frontier and hot spot of future vehicle research. In response to the new development needs of wide airspace and wide speed domain of the morphing aircraft, a spanwise bending morphing wing mechanism with a multi-closed-loop space mechanism based on the equilateral Bennett mechanism was proposed. Firstly, the geometric characteristics of the equilateral Bennett mechanism were studied, and the design scheme of the multi-closed-loop morphing wing mechanism based on the equilateral Bennett mechanism was proposed. Secondly, the constrained spiral solution method was used to solve the degrees of freedom of the morphing wing mechanism, and the kinematic model was established based on the D-H coordinate transformation method. Then, the 3D model and virtual prototype of the mechanism were established, and the kinematic simulation was carried out to verify the above model. The prototype was made, and the experiment was carried out. The research results show that the proposed morphing wing mechanism needs only one power source to drive the mechanism movement, with a simple structure and high modularity rate, and the proposed morphing wing mechanism can realize the accurate connection between the parts and the expected spanwise bending action. The research results provide a reference for the basic research and engineering application of morphing wings for new types of morphing aircraft.
-
表 1 空间六杆机构D-H参数
Table 1. D-H parameters of space six-bar mechanism
i ai αi di ϕi 1 l αi 0 ϕ1 2 l π−αi 0 ϕ2 3 l 0 0 ϕ3 4 l 0 0 ϕ4 -
[1] 周文雅, 张宗宇, 王晓明, 等. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报, 2021, 57(2): 121-138. doi: 10.3901/JME.2021.02.121ZHOU W Y, ZHANG Z Y, WANG X M, et al. Research progress and key techniques of active morphing wing at medium and small scales[J]. Journal of Mechanical Engineering, 2021, 57(2): 121-138(in Chinese). doi: 10.3901/JME.2021.02.121 [2] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682 [3] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. doi: 10.1016/j.cja.2021.09.013 [4] KAO J Y, CLARK D L, WHITE T, et al. Conceptual multidisciplinary design and optimization of morphing aircraft: AIAA-2019-0175[R]. Reston: AIAA, 2019. [5] GUO J B, ZHAO C J, SONG Z G. Discussion on research status and key technologies of morphing aircraft[C]//Proceedings of the International Conference on Mechatronics Technology and Aerospace Engineering. Bristol: IOP Publishing, 2021: 24-26. [6] 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. doi: 10.7527/S1000-6893.2022.27449RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449(in Chinese). doi: 10.7527/S1000-6893.2022.27449 [7] NEAL A D. Design, development, and analysis of a morphing aircraft model for wind tunnel experimentation[D]. Blacksburg: Virginia Polytechnic Institute, 2006. [8] FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1: AIAA-2007-1707[R]. Reston: AIAA, 2007. [9] YOUNG T M, HIRST M. Innovation in aeronautics[M]. [S.l.]: Woodhead Publishing, 2012: 37-55. [10] MANZO J, GARCIA E. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism[J]. Smart Materials and Structures, 2010, 19(2): 025012. doi: 10.1088/0964-1726/19/2/025012 [11] LAZOS B S. Biologically inspired fixed-wing configuration studies[J]. Journal of Aircraft, 2005, 42(5): 1089-1098. doi: 10.2514/1.10496 [12] WANG Q, CHEN Y, TANG H. Mechanism design for aircraft morphing wing: AIAA-2012-1608[R]. Reston: AIAA, 2012. [13] GRANT D T, ABDULRAHIM M, LIND R. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[J]. International Journal of Micro Air Vehicles, 2010, 2(2): 91-106. doi: 10.1260/1756-8293.2.2.91 [14] MOOSAVIAN A, XI F F, HASHEMI S M. Design and motion control of fully variable morphing wings[J]. Journal of Aircraft, 2013, 50(4): 1189-1201. doi: 10.2514/1.C032127 [15] 陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013, 31(1): 40-46.CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica, 2013, 31(1): 40-46(in Chinese). [16] 王云飞, 肖洪, 杨广, 等. 平行连杆式变形翼结构设计及分布式驱动配置[J]. 哈尔滨工业大学学报, 2022, 54(1): 65-72. doi: 10.11918/202011032WANG Y F, XIAO H, YANG G, et al. Structure design and distributed actuators configuration of a parallel linkage morphing wing[J]. Journal of Harbin Institute of Technology, 2022, 54(1): 65-72(in Chinese). doi: 10.11918/202011032 [17] 肖洪, 郭宏伟, 张蒂, 等. 一种基于四面体单元的变形翼骨架设计与分析[J]. 航空学报, 2022, 43(7): 425391. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207031XIAO H, GUO H W, ZHANG D, et al. Design and analysis of morphing wing skeleton based on tetrahedral element[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425391(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207031 [18] JACOB J, SMITH S. Design limitations of deployable wings for small low altitude UAVs: AIAA-2009-745[R]. Reston: AIAA, 2009. [19] PERKINS D, REED J, HAVENS E. Morphing wing structures for loitering air vehicles: AIAA-2004-1888[R]. Reston: AIAA, 2004. [20] KOTA S. Twistable wings take flight[J]. IEEE Spectrum, 2016, 53: 28-33. [21] SONG X K, GUO H W, LIU S J, et al. Cable-truss hybrid double-layer deployable mechanical network constructed of Bennett linkages and planar symmetric four-bar linkages[J]. Mechanism and Machine Theory, 2019, 133: 459-480. doi: 10.1016/j.mechmachtheory.2018.12.003 [22] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 121-137.HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 121-137(in Chinese). -


下载: