留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平流层飞艇能源系统稳定性分析

高阳 徐国宁 王生 李永祥 蔡榕 杨燕初

高阳,徐国宁,王生,等. 平流层飞艇能源系统稳定性分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2701-2715 doi: 10.13700/j.bh.1001-5965.2023.0020
引用本文: 高阳,徐国宁,王生,等. 平流层飞艇能源系统稳定性分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2701-2715 doi: 10.13700/j.bh.1001-5965.2023.0020
GAO Y,XU G N,WANG S,et al. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2701-2715 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0020
Citation: GAO Y,XU G N,WANG S,et al. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2701-2715 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0020

平流层飞艇能源系统稳定性分析

doi: 10.13700/j.bh.1001-5965.2023.0020
基金项目: 

中国科学院战略性先导专项(XDA17020304)

详细信息
    通讯作者:

    E-mail:xugn@aircas.ac.cn

  • 中图分类号: TM46

Stability analysis of stratospheric airship energy system

Funds: 

Strategic Priority Research Program of the Chinese Academy of Science ( XDA17020304)

More Information
  • 摘要:

    能源系统的稳定性对长航时飞行的平流层飞艇安全和可靠运行至关重要,特别是对于采用多母线结构和多种变换器串并联组成的能源系统,稳定性问题更为突出。基于此,提出一种新的基于三端口变换器来实现半调节母线方式的平流层飞艇能源系统结构,建立平流层飞艇能源系统中各种变换器的阻抗模型,推导出能源系统在不同子系统划分方法下的输入和输出阻抗。利用多母线直流系统阻抗比稳定判据对其进行了稳定性分析,结果表明,能源系统在不同负载阻抗下都是不稳定的,之后通过仿真实验验证了理论分析结果。最终提出基于一致性功率协调控制和滑模控制的飞艇能源系统分层控制方法,仿真实验显示,使用该方法后能源系统母线电压在多种变化条件下均可保持稳定,表明该方法可增强飞艇能源系统的稳定性。

     

  • 图 1  半调节母线方式平流层飞艇能源系统结构

    Figure 1.  Structure of stratospheric airship energy system with half regulate bus mode

    图 2  平流层飞艇能源系统模型

    Figure 2.  Model of energy system for stratospheric airship

    图 3  boost变换器电路

    Figure 3.  Circuit of boost converter

    图 4  boost变换器电压电流双闭环控制框图

    Figure 4.  Block diagram of voltage and current double closed-loop control for boost converter

    图 5  buck变换器电路

    Figure 5.  Circuit of buck converter

    图 6  buck变换器电压电流双闭环控制框图

    Figure 6.  Block diagram of voltage and current double closed-loop control for buck converter

    图 7  三相电压型PWM逆变器

    Figure 7.  Three phase voltage type PWM inverter

    图 8  三相电压型逆变器小信号交流模型的等效电路

    Figure 8.  Equivalent circuit of small signal AC model for three-phase voltage source inverter

    图 9  dq解耦控制框图

    Figure 9.  dq decoupling control block diagram

    图 10  解耦后三相电压型逆变器小信号模型

    Figure 10.  Small signal model of decoupled three-phase voltage source inverter

    图 11  飞艇能源系统2种子系统划分方法

    Figure 11.  Two subsystem division methods for airship energy system

    图 12  负载R5=0.1 Ω,R3=0.1,1,10 Ω时ZinHZoH的伯德图

    Figure 12.  Bode plots of ZinH, ZoH under load R5=0.1 Ω, R3=0.1,1,10 Ω

    图 13  负载R5=10 Ω,R3=0.1,1,10 Ω时ZinHZoH的伯德图

    Figure 13.  Bode plots of ZinH, ZoH under load R5=10 Ω,R3=0.1,1,10 Ω

    图 14  负载R3=0.1 Ω,R5=0.1,1,10 Ω时ZinLZoL的伯德图

    Figure 14.  Bode plots of ZinL, ZoL under load R3=0.1 Ω,R5=0.1,1,10 Ω

    图 15  负载R3=10 Ω,R5=0.1,1,10 Ω时ZinLZoL的伯德图

    Figure 15.  Bode plots of ZinL, ZoL under load R3=0.1 Ω,R5=0.1,1,10 Ω

    图 16  R3=0.1 Ω时系统的稳态仿真波形

    Figure 16.  Steady-state simulation waveforms of system when R3=0.1 Ω

    图 17  R3=1 Ω时系统的稳态仿真波形

    Figure 17.  Steady-state simulation waveforms of system when R3=1 Ω

    图 18  R3=10 Ω时系统的稳态仿真波形

    Figure 18.  Steady-state simulation waveforms of system when R3=10 Ω

    图 19  boost变换器与逆变器级联的输入、 输出阻抗伯德图

    Figure 19.  Bode plots of input and output impedance for boost and inverter

    图 20  boost变换器与buck变换器级联的输入、输出阻抗伯德图

    Figure 20.  Bode plots of input and output impedance for boost and buck converter

    图 21  boost变换器与逆变器、buck变换器级联的输入、输出阻抗伯德图

    Figure 21.  Bode plots of input and output impedance for boost, inverter and buck converter

    图 22  启动响应对比波形

    Figure 22.  Contrast waveforms of start response

    图 23  输入电压变化时高压母线电压对比波形

    Figure 23.  Comparison waveform of high-voltage bus voltage when input voltage changes

    图 24  负载电阻增大时高压母线电压对比波形

    Figure 24.  Comparison waveform of high-voltage bus voltage when load resistance increases

  • [1] CHU A, BLACKMORE M, OHOLENDT R, et al. A novel concept for stratospheric communications and surveillance: the StarLight[C]//Proceedings of the AIAA Balloon Systems Conference. Reston: AIAA, 2007.
    [2] WANG W Q. Near-space vehicles: supply a gap between satellites and airplanes for remote sensing[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(4): 4-9. doi: 10.1109/MAES.2011.5763337
    [3] ZUO Z Y, CHENG L, WANG X X, et al. Three-dimensional path-following backstepping control for an underactuated stratospheric airship[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1483-1497. doi: 10.1109/TAES.2018.2873054
    [4] YUAN J C, ZHU M, GUO X, et al. Trajectory tracking control for a stratospheric airship subject to constraints and unknown disturbances[J]. IEEE Access, 2020, 8: 31453-31470. doi: 10.1109/ACCESS.2020.2973236
    [5] YANG X X, LIU D N. Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable Energy, 2017, 113: 1070-1076. doi: 10.1016/j.renene.2017.06.077
    [6] ALAM M I, PANT R S. Multidisciplinary approach for solar area optimization of high altitude airships[J]. Energy Conversion and Management, 2018, 164: 301-310. doi: 10.1016/j.enconman.2018.03.009
    [7] 郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936.

    GUO L, FENG Y B, LI X L, et al. Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE, 2016, 36(4): 927-936(in Chinese).
    [8] 高本锋, 江婷, 于弘洋, 等. H桥级联型SSSC的动态模型及小干扰稳定性分析[J]. 电力自动化设备, 2020, 40(2): 35-42.

    GAO B F, JIANG T, YU H Y, et al. Dynamic model and small interference stability analysis of H-bridge cascaded SSSC[J]. Electric Power Automation Equipment, 2020, 40(2): 35-42(in Chinese).
    [9] 季宇, 王东旭, 吴红斌, 等. 提高直流微电网稳定性的有源阻尼方法[J]. 电工技术学报, 2018, 33(2): 370-379.

    JI Y, WANG D X, WU H B, et al. The active damping method for improving the stability of DC microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 370-379(in Chinese).
    [10] PAN P P, CHEN W, SHU L C, et al. An impedance-based stability assessment methodology for DC distribution power system with multivoltage levels[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4033-4047. doi: 10.1109/TPEL.2019.2936527
    [11] MU H, ZHANG Y, TONG X Q, et al. Impedance-based stability analysis methods for DC distribution power system with multivoltage levels[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9193-9208. doi: 10.1109/TPEL.2021.3057874
    [12] LENG M R, ZHOU G H, LI H Z, et al. Impedance-based stability evaluation for multibus DC microgrid without constraints on subsystems[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 932-943. doi: 10.1109/TPEL.2021.3093372
    [13] XU Q W, WANG P, CHEN J W, et al. A module-based approach for stability analysis of complex more-electric aircraft power system[J]. IEEE Transactions on Transportation Electrification, 2017, 3(4): 901-919. doi: 10.1109/TTE.2017.2695886
    [14] GAO F, ZHENG X C, BOZHKO S, et al. Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1): 65-76. doi: 10.1109/TTE.2015.2427312
    [15] EBRAHIMI H, EL-KISHKY H. A novel generalized state-space averaging (GSSA) model for advanced aircraft electric power systems[J]. Energy Conversion and Management, 2015, 89: 507-524. doi: 10.1016/j.enconman.2014.10.014
    [16] SULLIGOI G, BOSICH D, GIADROSSI G, et al. Multiconverter medium voltage DC power systems on ships: constant-power loads instability solution using linearization via state feedback control[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2543-2552. doi: 10.1109/TSG.2014.2305904
    [17] 张辉, 杜明桥, 孙凯, 等. 双母线直流微电网的级联稳定性分析[J]. 电力自动化设备, 2021, 41(5): 34-42.

    ZHANG H, DU M Q, SUN K, et al. Cascade stability analysis of double-bus DC microgrid[J]. Electric Power Automation Equipment, 2021, 41(5): 34-42 (in Chinese).
    [18] WU M F, LU D D. A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4552-4562. doi: 10.1109/TIE.2014.2367005
    [19] 张辉, 杨甲甲, 支娜, 等. 基于无源阻尼的直流微电网稳定性分析[J]. 高电压技术, 2017, 43(9): 3100-3109.

    ZHANG H, YANG J J, ZHI N, et al. Stability analysis of DC microgrid based on the passive damping method[J]. High Voltage Engineering, 2017, 43(9): 3100-3109(in Chinese).
    [20] 朱晓荣, 孟欣欣. 直流微电网的稳定性分析及有源阻尼控制研究[J]. 高电压技术, 2020, 46(5): 1670-1681.

    ZHU X R, MENG X X. Stability analysis and research of active damping control method for DC microgrids[J]. High Voltage Engineering, 2020, 46(5): 1670-1681(in Chinese).
    [21] 万勋, 李云丰, 彭敏放. 直流输电系统虚拟并联电阻阻尼控制策略研究[J]. 中国电机工程学报, 2018, 38(12): 3471-3480.

    WAN X, LI Y F, PENG M F. Virtual parallel resistor damping control of VSC based HVDC system[J]. Proceedings of the CSEE, 2018, 38(12): 3471-3480(in Chinese).
    [22] ZHANG M M, LI Y, LIU F, et al. Voltage stability analysis and sliding-mode control method for rectifier in DC systems with constant power loads[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1621-1630. doi: 10.1109/JESTPE.2017.2723482
    [23] JIANG W T, ZHANG X N, LIN P F, et al. Combined sliding-mode control for the IFDBC interfaced DC microgrids with power electronic loads[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3396-3410. doi: 10.1109/JESTPE.2020.2982564
    [24] VAZQUEZ S, LEON J I, FRANQUELO L G, et al. Model predictive control: a review of its applications in power electronics[J]. IEEE Industrial Electronics Magazine, 2014, 8(1): 16-31. doi: 10.1109/MIE.2013.2290138
    [25] SANTI E, MONTI A, LI D H, et al. Synergetic control for DC-DC boost converter: implementation options[J]. IEEE Transactions on Industry Applications, 2003, 39(6): 1803-1813. doi: 10.1109/TIA.2003.818967
    [26] HASSAN M A, SADIQ M, HOANG L Q N, et al. Adaptive passivity-based control for bidirectional DC-DC power converter supplying constant power loads in DC shipboard microgrids[C]//Proceedings of the IEEE International Future Energy Electronics Conference. Piscataway: IEEE Press, 2021: 1-6.
  • 加载中
图(24)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  111
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-13
  • 录用日期:  2023-05-03
  • 网络出版日期:  2023-05-10
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答