留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多普勒频移改变量的单星航空器位置验证

刘海涛 冯景勃 李冬霞 王磊

刘海涛,冯景勃,李冬霞,等. 基于多普勒频移改变量的单星航空器位置验证[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):1-8 doi: 10.13700/j.bh.1001-5965.2022.1024
引用本文: 刘海涛,冯景勃,李冬霞,等. 基于多普勒频移改变量的单星航空器位置验证[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):1-8 doi: 10.13700/j.bh.1001-5965.2022.1024
LIU H T,FENG J B,LI D X,et al. Aircraft position verification with one satellite based on Doppler shift change[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):1-8 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1024
Citation: LIU H T,FENG J B,LI D X,et al. Aircraft position verification with one satellite based on Doppler shift change[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):1-8 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1024

基于多普勒频移改变量的单星航空器位置验证

doi: 10.13700/j.bh.1001-5965.2022.1024
基金项目: 

国家重点研发计划(2016YFB0502402);国家自然科学基金(U1733120);天津市多元投入基金(21JCQNJC00770) 

详细信息
    通讯作者:

    E-mail:htliucauc@qq.com

  • 中图分类号: TN925

Aircraft position verification with one satellite based on Doppler shift change

Funds: 

National Key Research and Development Program of China (2016YFB0502402); National Natural Science Foundation of China (U1733120); Multiple Input Foundation of Tianjin in China (21JCQNJC00770) 

More Information
  • 摘要:

    星基广播式自动相关监视(ADS-B)是实现广域范围内航空器监视的重要技术手段。为解决星基ADS-B系统存在的虚假目标干扰问题,提出一种基于多普勒频移改变量的单星航空器位置验证方法。建立星基ADS-B验证系统模型,理论分析给出空天链路多普勒频移改变量的计算方法,并采用柯尔莫哥洛夫-斯米尔诺夫(k-s)检验方法识别虚假ADS-B消息,最后,通过计算机仿真验证所提方法的正确性和有效性。仿真结果表明:所提方法的检测概率达到97.75%以上,漏警概率低于4.50%;此外,所提方法只需单颗低轨道卫星进行监视,并且对航空器和卫星的定位误差不敏感。

     

  • 图 1  星基ADS-B验证系统示意图

    Figure 1.  Diagram of satellite-based ADS-B verification system

    图 2  航空器与卫星的位置关系

    Figure 2.  Position relationship between aircraft and satellite

    图 3  仿真场景A

    Figure 3.  Simulation scenario A

    图 4  仿真场景B

    Figure 4.  Simulation scenario B

    图 5  p值分布(仿真场景A)

    Figure 5.  p-value distribution (simulation scenario A)

    图 6  频率估计误差对检测性能的影响

    Figure 6.  Influence of frequency estimation error on detection performance

    图 7  ADS-B水平和垂直位置误差对检测性能的影响(仿真场景A)

    Figure 7.  Influence of ADS-B horizontal and vertical position error on detection performance (simulation scenario A)

    图 8  卫星定轨误差对检测性能的影响(仿真场景A)

    Figure 8.  Influence of satellite orbit determination error on detection performance (simulation scenario A)

    图 9  不同数据比较方法对检测性能的影响(仿真场景A)

    Figure 9.  Influence of different data comparison methods on detection performance (simulation scenario A)

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    参数 数值
    频率估计误差的标准差[18]/Hz 1.0
    卫星定轨误差的标准差[20-22]/m 10.0
    ADS-B水平位置误差的标准差[25]/m 4.0
    ADS-B垂直位置误差的标准差[25]/m 6.6
    下载: 导出CSV

    表  2  欺骗源的空间位置对检测性能的影响

    Table  2.   Influence of spatial location of spoofing source on detection performance

    欺骗源的空间位置 虚警概率/% 漏警概率/% 检测概率/%
    正东 0 1.00 99.50
    正西 0 2.00 99.00
    正南 0 1.50 99.25
    正北 0 3.50 98.25
    下载: 导出CSV

    表  3  消息丢失率对检测性能的影响

    Table  3.   Influence of message loss rate on detection performance

    消息丢失率/% 虚警概率/% 漏警概率/% 检测概率/%
    0 0 4.50 97.75
    25 0 5.00 97.50
    50 0 6.00 97.00
    75 0 31.50 84.25
    下载: 导出CSV
  • [1] 刘海涛, 杨宁, 李冬霞, 等. “北航空事卫星一号”监视载荷的统计性能[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(11): 2883-2889.

    LIU H T, YANG N, LI D X, et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 2883-2889(in Chinese).
    [2] 张学军, 谭元晧, 李雪缘, 等. 星基ADS-B系统及关键技术发展综述[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(9): 1589-1604.

    ZHANG X J, TAN Y H, LI X Y, et al. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604(in Chinese).
    [3] BLOMENHOFER H, PAWLITZKI A, ROSENTHAL P, et al. Space-based automatic dependent surveillance broadcast (ADS-B) payload for In-orbit demonstration[C]//Proceedings of the 6th Advanced Satellite Multimedia Systems Conference and 12th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2012: 160-165.
    [4] WERNER K, BREDEMEYER J, DELOVSKI T. ADS-B over satellite: Global air traffic surveillance from space[C]//Proceedings of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles. Piscataway: IEEE Press, 2014: 47-52.
    [5] SCHAFER M, LENDERS V, MARTINOVIC I. Experimental analysis of attacks on next generation air traffic communication [C]//Applied Cryptography and Network Security. Berlin: Springer, 2013: 253-271.
    [6] COSTIN A, FRANCILLON A. Ghost in the Air(Traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices[EB/OL]. (2012-07-21)[2022-10-10]. http://www.eurecom.fr/publication/3788.
    [7] FINKE C, BUTTS J, MILLS R, et al. Enhancing the security of aircraft surveillance in the next generation air traffic control system[J]. International Journal of Critical Infrastructure Protection, 2013, 6(1): 3-11. doi: 10.1016/j.ijcip.2013.02.001
    [8] DOLAN J, GARCIA M A. Aireon independent validation of aircraft position via space-based ADS-B[C]//Proceedings of the Enhanced Solutions for Aircraft and Vehicle Surveillance Applications Conference.[s.l.]: [s.n.], 2018.
    [9] WANG W Y, CHEN G, WU R B, et al. A low-complexity spoofing detection and suppression approach for ADS-B[C]//Proceedings of the Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2015: K2-1-K2-8.
    [10] NAGANAWA J, MIYAZAKI H. A theory of aircraft position verification using TDOA[C]//Proceedings of the Asia-Pacific Microwave Conference. Piscataway: IEEE Press, 2018: 833-835.
    [11] 王文益, 李文静, 卢丹, 等. 利用TDOA相关系数的ADS-B欺骗式干扰检测[J]. 信号处理, 2019, 35(11): 1784-1790.

    WANG W Y, LI W J, LU D, et al. ADS-B spoofing detection method using TDOA correlation coefficient[J]. Journal of Signal Processing, 2019, 35(11): 1784-1790(in Chinese).
    [12] 陈蕾, 吴仁彪, 卢丹. 利用多普勒效应的ADS-B欺骗式干扰检测方法[J]. 信号处理, 2018, 34(6): 722-728.

    CHEN L, WU R B, LU D. ADS-B spoofing detection method using Doppler effect[J]. Journal of Signal Processing, 2018, 34(6): 722-728(in Chinese).
    [13] GHOSE N, LAZOS L. Verifying ADS-B navigation information through Doppler shift measurements[C]//Proceedings of the IEEE/AIAA 34th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2015: 1-27.
    [14] LI W, KAMAL P. Integrated aviation security for defense-in-depth of next generation air transportation system[C]//Proceedings of the IEEE International Conference on Technologies for Homeland Security. Piscataway: IEEE Press, 2011: 136-142.
    [15] HABLEEL E, BAEK J, BYON Y J, et al. How to protect ADS-B: Confidentiality framework for future air traffic communication[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE Press, 2015: 155-160.
    [16] AMIN S, CLARK T, OFFUTT R, et al. Design of a cyber security framework for ADS-B based surveillance systems[C]//Proceedings of the Systems and Information Engineering Design Symposium. Piscataway: IEEE Press, 2014: 304-309.
    [17] 李桓, 李洪星, 王晋, 等. 基于频率补偿的双星时差频差联合无源定位装置及方法: CN110068340B[P]. 2020-08-18.

    LI H, LI H X, WANG J, et al. A passive location device and method for binary time difference and frequency difference based on frequency compensation: CN110068340B[P]. 2020-08-18(in Chinese).
    [18] TAO F, JUN L. Parameter estimation of weak space-based ADS-B signals using genetic algorithm[J]. ETRI Journal, 2021, 43(2): 324-331. doi: 10.4218/etrij.2019-0484
    [19] 仲伟志, 郭庆. 基于高动态运动模型的多普勒频移仿真[J]. 计算机工程, 2010, 36(20): 22-24. doi: 10.3969/j.issn.1000-3428.2010.20.008

    ZHONG W Z, GUO Q. Doppler frequency shift simulation based on high dynamic motion model[J]. Computer Engineering, 2010, 36(20): 22-24(in Chinese). doi: 10.3969/j.issn.1000-3428.2010.20.008
    [20] CZAB C, SZ A, BPA B, et al. Real-time orbit determination of Low Earth orbit satellite based on RINEX/DORIS 3.0 phase data and spaceborne GPS data-ScienceDirect[J]. Advances in Space Research, 2020, 66(7): 1700-1712. doi: 10.1016/j.asr.2020.06.027
    [21] WANG F H, GONG X W, SANG J Z, et al. A novel method for precise onboard real-time orbit determination with a standalone GPS receiver[J]. Sensors, 2015, 15(12): 30403-30418. doi: 10.3390/s151229805
    [22] MONTENBRUCK O, RAMOS-BOSCH P. Precision real-time navigation of LEO satellites using global positioning system measurements[J]. GPS Solutions, 2008, 12(3): 187-198. doi: 10.1007/s10291-007-0080-x
    [23] 方坤, 何怡刚, 黄源, 等. 基于K-S检验的瑞利衰落信道统计特性评估[J]. 电子测量与仪器学报, 2018, 32(8): 36-41.

    FANG K, HE Y G, HUANG Y, et al. Evaluation for statistical characteristics of Rayleigh fading channels via Kolmogorov-Smirnov test[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 36-41(in Chinese).
    [24] WANG F G, WANG X D. Fast and robust modulation classification via kolmogorov-smirnov test[J]. IEEE Transactions on Communications, 2010, 58(8): 2324-2332. doi: 10.1109/TCOMM.2010.08.090481
    [25] DEPARTMENT O. Global positioning system standard positioning service performance standard[J]. GPS & Its Augmentation Systems, 2008, 35(2): 197-216.
    [26] 陆安南, 杨小牛. 单星测频测相位差无源定位[J]. 系统工程与电子技术, 2010, 32(2): 244-247.

    LU A N, YANG X N. Passive location from the combined set of frequency and phase difference measurements by single satellite[J]. Systems Engineering and Electronics, 2010, 32(2): 244-247(in Chinese).
    [27] 黄静, 赵薇薇, 陈雪华, 等. 单星测频静态目标无源定位研究[J]. 中国空间科学技术, 2019, 39(4): 11-17.

    HUANG J, ZHAO W W, CHEN X H, et al. Passive positoning algorithm based on single satellite frequency measurement[J]. Chinese Space Science and Technology, 2019, 39(4): 11-17(in Chinese).
    [28] 朱重儒, 朱立东. 一种基于加权最小二乘载频估计的单星定位算法[J]. 空间电子技术, 2021, 18(2): 9-15. doi: 10.3969/j.issn.1674-7135.2021.02.002

    ZHU Z R, ZHU L D. A single satellite location algorithm based on weighted least square carrier frequency estimation[J]. Space Electronic Technology, 2021, 18(2): 9-15(in Chinese). doi: 10.3969/j.issn.1674-7135.2021.02.002
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  179
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-05-10
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答