-
摘要:
星基广播式自动相关监视(ADS-B)是实现广域范围内航空器监视的重要技术手段。为解决星基ADS-B系统存在的虚假目标干扰问题,提出一种基于多普勒频移改变量的单星航空器位置验证方法。建立星基ADS-B验证系统模型,理论分析给出空天链路多普勒频移改变量的计算方法,并采用柯尔莫哥洛夫-斯米尔诺夫(k-s)检验方法识别虚假ADS-B消息,最后,通过计算机仿真验证所提方法的正确性和有效性。仿真结果表明:所提方法的检测概率达到97.75%以上,漏警概率低于4.50%;此外,所提方法只需单颗低轨道卫星进行监视,并且对航空器和卫星的定位误差不敏感。
Abstract:Satellite-based automatic dependent surveillance-broadcast (ADS-B) is an important technology for wide-area aircraft surveillance. To solve the problem of false target interference existing in the satellite-based ADS-B system, a position verification method with one satellite based on Doppler shift change was proposed. First, the system model of satellite-based ADS-B was presented. Then, the formula for the Doppler shift change of aerospace link was theoretically provided. Furthermore, the Kolmogorov-Smirnoff (k-s) test was used to verify the authenticity of the ADS-B position message. Finally, the correctness and effectiveness of the proposed scheme were verified by computer simulation. The simulation results show that the probability of detection of the proposed method is more than 97.75%, and the false dismissal probability is less than 4.50%. In addition, only one low-orbit satellite is required for monitoring, and it is not sensitive to positioning errors of aircraft and satellites.
-
表 1 仿真参数设置
Table 1. Simulation parameter setting
表 2 欺骗源的空间位置对检测性能的影响
Table 2. Influence of spatial location of spoofing source on detection performance
欺骗源的空间位置 虚警概率/% 漏警概率/% 检测概率/% 正东 0 1.00 99.50 正西 0 2.00 99.00 正南 0 1.50 99.25 正北 0 3.50 98.25 表 3 消息丢失率对检测性能的影响
Table 3. Influence of message loss rate on detection performance
消息丢失率/% 虚警概率/% 漏警概率/% 检测概率/% 0 0 4.50 97.75 25 0 5.00 97.50 50 0 6.00 97.00 75 0 31.50 84.25 -
[1] 刘海涛, 杨宁, 李冬霞, 等. “北航空事卫星一号”监视载荷的统计性能[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(11): 2883-2889.LIU H T, YANG N, LI D X, et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 2883-2889(in Chinese). [2] 张学军, 谭元晧, 李雪缘, 等. 星基ADS-B系统及关键技术发展综述[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(9): 1589-1604.ZHANG X J, TAN Y H, LI X Y, et al. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604(in Chinese). [3] BLOMENHOFER H, PAWLITZKI A, ROSENTHAL P, et al. Space-based automatic dependent surveillance broadcast (ADS-B) payload for In-orbit demonstration[C]//Proceedings of the 6th Advanced Satellite Multimedia Systems Conference and 12th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2012: 160-165. [4] WERNER K, BREDEMEYER J, DELOVSKI T. ADS-B over satellite: Global air traffic surveillance from space[C]//Proceedings of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles. Piscataway: IEEE Press, 2014: 47-52. [5] SCHAFER M, LENDERS V, MARTINOVIC I. Experimental analysis of attacks on next generation air traffic communication [C]//Applied Cryptography and Network Security. Berlin: Springer, 2013: 253-271. [6] COSTIN A, FRANCILLON A. Ghost in the Air(Traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices[EB/OL]. (2012-07-21)[2022-10-10]. http://www.eurecom.fr/publication/3788. [7] FINKE C, BUTTS J, MILLS R, et al. Enhancing the security of aircraft surveillance in the next generation air traffic control system[J]. International Journal of Critical Infrastructure Protection, 2013, 6(1): 3-11. doi: 10.1016/j.ijcip.2013.02.001 [8] DOLAN J, GARCIA M A. Aireon independent validation of aircraft position via space-based ADS-B[C]//Proceedings of the Enhanced Solutions for Aircraft and Vehicle Surveillance Applications Conference.[s.l.]: [s.n.], 2018. [9] WANG W Y, CHEN G, WU R B, et al. A low-complexity spoofing detection and suppression approach for ADS-B[C]//Proceedings of the Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2015: K2-1-K2-8. [10] NAGANAWA J, MIYAZAKI H. A theory of aircraft position verification using TDOA[C]//Proceedings of the Asia-Pacific Microwave Conference. Piscataway: IEEE Press, 2018: 833-835. [11] 王文益, 李文静, 卢丹, 等. 利用TDOA相关系数的ADS-B欺骗式干扰检测[J]. 信号处理, 2019, 35(11): 1784-1790.WANG W Y, LI W J, LU D, et al. ADS-B spoofing detection method using TDOA correlation coefficient[J]. Journal of Signal Processing, 2019, 35(11): 1784-1790(in Chinese). [12] 陈蕾, 吴仁彪, 卢丹. 利用多普勒效应的ADS-B欺骗式干扰检测方法[J]. 信号处理, 2018, 34(6): 722-728.CHEN L, WU R B, LU D. ADS-B spoofing detection method using Doppler effect[J]. Journal of Signal Processing, 2018, 34(6): 722-728(in Chinese). [13] GHOSE N, LAZOS L. Verifying ADS-B navigation information through Doppler shift measurements[C]//Proceedings of the IEEE/AIAA 34th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2015: 1-27. [14] LI W, KAMAL P. Integrated aviation security for defense-in-depth of next generation air transportation system[C]//Proceedings of the IEEE International Conference on Technologies for Homeland Security. Piscataway: IEEE Press, 2011: 136-142. [15] HABLEEL E, BAEK J, BYON Y J, et al. How to protect ADS-B: Confidentiality framework for future air traffic communication[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE Press, 2015: 155-160. [16] AMIN S, CLARK T, OFFUTT R, et al. Design of a cyber security framework for ADS-B based surveillance systems[C]//Proceedings of the Systems and Information Engineering Design Symposium. Piscataway: IEEE Press, 2014: 304-309. [17] 李桓, 李洪星, 王晋, 等. 基于频率补偿的双星时差频差联合无源定位装置及方法: CN110068340B[P]. 2020-08-18.LI H, LI H X, WANG J, et al. A passive location device and method for binary time difference and frequency difference based on frequency compensation: CN110068340B[P]. 2020-08-18(in Chinese). [18] TAO F, JUN L. Parameter estimation of weak space-based ADS-B signals using genetic algorithm[J]. ETRI Journal, 2021, 43(2): 324-331. doi: 10.4218/etrij.2019-0484 [19] 仲伟志, 郭庆. 基于高动态运动模型的多普勒频移仿真[J]. 计算机工程, 2010, 36(20): 22-24. doi: 10.3969/j.issn.1000-3428.2010.20.008ZHONG W Z, GUO Q. Doppler frequency shift simulation based on high dynamic motion model[J]. Computer Engineering, 2010, 36(20): 22-24(in Chinese). doi: 10.3969/j.issn.1000-3428.2010.20.008 [20] CZAB C, SZ A, BPA B, et al. Real-time orbit determination of Low Earth orbit satellite based on RINEX/DORIS 3.0 phase data and spaceborne GPS data-ScienceDirect[J]. Advances in Space Research, 2020, 66(7): 1700-1712. doi: 10.1016/j.asr.2020.06.027 [21] WANG F H, GONG X W, SANG J Z, et al. A novel method for precise onboard real-time orbit determination with a standalone GPS receiver[J]. Sensors, 2015, 15(12): 30403-30418. doi: 10.3390/s151229805 [22] MONTENBRUCK O, RAMOS-BOSCH P. Precision real-time navigation of LEO satellites using global positioning system measurements[J]. GPS Solutions, 2008, 12(3): 187-198. doi: 10.1007/s10291-007-0080-x [23] 方坤, 何怡刚, 黄源, 等. 基于K-S检验的瑞利衰落信道统计特性评估[J]. 电子测量与仪器学报, 2018, 32(8): 36-41.FANG K, HE Y G, HUANG Y, et al. Evaluation for statistical characteristics of Rayleigh fading channels via Kolmogorov-Smirnov test[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 36-41(in Chinese). [24] WANG F G, WANG X D. Fast and robust modulation classification via kolmogorov-smirnov test[J]. IEEE Transactions on Communications, 2010, 58(8): 2324-2332. doi: 10.1109/TCOMM.2010.08.090481 [25] DEPARTMENT O. Global positioning system standard positioning service performance standard[J]. GPS & Its Augmentation Systems, 2008, 35(2): 197-216. [26] 陆安南, 杨小牛. 单星测频测相位差无源定位[J]. 系统工程与电子技术, 2010, 32(2): 244-247.LU A N, YANG X N. Passive location from the combined set of frequency and phase difference measurements by single satellite[J]. Systems Engineering and Electronics, 2010, 32(2): 244-247(in Chinese). [27] 黄静, 赵薇薇, 陈雪华, 等. 单星测频静态目标无源定位研究[J]. 中国空间科学技术, 2019, 39(4): 11-17.HUANG J, ZHAO W W, CHEN X H, et al. Passive positoning algorithm based on single satellite frequency measurement[J]. Chinese Space Science and Technology, 2019, 39(4): 11-17(in Chinese). [28] 朱重儒, 朱立东. 一种基于加权最小二乘载频估计的单星定位算法[J]. 空间电子技术, 2021, 18(2): 9-15. doi: 10.3969/j.issn.1674-7135.2021.02.002ZHU Z R, ZHU L D. A single satellite location algorithm based on weighted least square carrier frequency estimation[J]. Space Electronic Technology, 2021, 18(2): 9-15(in Chinese). doi: 10.3969/j.issn.1674-7135.2021.02.002 -


下载: