留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进SuperPoint与线性转换器的可见光红外匹配算法

伍薇 鲜勇 苏娟 张大巧 李少朋 李冰

伍薇,鲜勇,苏娟,等. 基于改进SuperPoint与线性转换器的可见光红外匹配算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):340-348 doi: 10.13700/j.bh.1001-5965.2022.1022
引用本文: 伍薇,鲜勇,苏娟,等. 基于改进SuperPoint与线性转换器的可见光红外匹配算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):340-348 doi: 10.13700/j.bh.1001-5965.2022.1022
WU W,XIAN Y,SU J,et al. A matching method based on improved SuperPoint and linear Transformer for optical and infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):340-348 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1022
Citation: WU W,XIAN Y,SU J,et al. A matching method based on improved SuperPoint and linear Transformer for optical and infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):340-348 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1022

基于改进SuperPoint与线性转换器的可见光红外匹配算法

doi: 10.13700/j.bh.1001-5965.2022.1022
基金项目: 

国家自然科学基金(62103432); 中国博士后科学基金(2022M721841) 

详细信息
    通讯作者:

    E-mail:sp-li16@mails.tsinghua.edu.cn

  • 中图分类号: TP183

A matching method based on improved SuperPoint and linear Transformer for optical and infrared images

Funds: 

National Natural Science Foundation of China (62103432); China Postdoctoral Science Foundation (2022M721841) 

More Information
  • 摘要:

    针对可见光和红外图像的异源图像匹配难度大、误匹配率高的问题,提出一种基于改进SuperPoint与线性转换器的深度学习匹配算法。首先在SuperPoint网络结构的基础上,引入特征金字塔的思想构建特征描述分支,基于铰链损失函数进行训练,从而较好地学习可见光与红外图像多尺度深层次特征,增大图像同名点对描述子的相似度;在特征匹配模块,利用线性转换器对SuperGlue匹配算法进行改进,聚合特征以提高匹配性能。在多个数据集上对所提算法进行实验验证,结果表明,与现有的算法相比,所提算法获得了更好的匹配效果,提高了匹配准确率。

     

  • 图 1  本文算法框架图

    Figure 1.  Framework of proposed algorithm

    图 2  改进SuperPoint网络结构图

    Figure 2.  Network structure of improved SuperPoint

    图 3  SIFT与SuperPoint特征点检测对比

    Figure 3.  Comparison of point feature detection between SIFT and SuperPoint

    图 4  L-SuperGlue结构图

    Figure 4.  Structure of L-SuperGlue

    图 5  线性转换器编码层结构图

    Figure 5.  Structure of linear transformer encoder layer

    图 6  自注意力与互注意力可视化

    Figure 6.  Visualization of self-attention and cross-attention

    图 7  RGB-NIR数据集匹配结果对比

    Figure 7.  Comparison of matching results from RGB-NIR dataset

    图 8  VEDAI数据集匹配结果对比

    Figure 8.  Comparison of matching results from VEDAI dataset

    图 9  VIS-IR数据集匹配结果对比

    Figure 9.  Comparison of matching results fromVIS-IR dataset

    表  1  不同算法的实验结果对比

    Table  1.   Comparison experiment results of different algorithms

    算法准确率/%匹配误差/pixel匹配耗时/s
    RGB-NIR数据集VEDAI数据集RGB-NIR数据集VEDAI数据集RGB-NIR数据集VEDAI数据集
    SIFT[3]58.0980.261.77341.51760.4690.518
    SuperPoint+SuperGlue[13]73.7285.761.38181.35380.0710.104
    D2-Net[18]54.0152.231.40281.35290.6250.649
    本文算法83.5697.651.07450.97420.3140.365
    下载: 导出CSV

    表  2  消融实验结果对比

    Table  2.   Comparison of ablation experiment results

    网络结构准确率/%匹配误差/pixel匹配耗时/s
    RGB-NIR数据集VEDAI数据集RGB-NIR数据集VEDAI数据集RGB-NIR数据集VEDAI数据集
    A73.7285.761.38181.35380.0710.104
    B82.3795.371.07670.97850.3060.339
    C81.4694.801.08670.97780.0750.110
    D83.5697.651.07450.97420.3140.365
    下载: 导出CSV

    表  3  网络参数量对比

    Table  3.   Comparison of network parameters

    特征提取与描述 特征匹配
    SuperPoint SuperPoint -FPN SuperGlue L- SuperGlue
    960000 4920000 11460000 11460000
    下载: 导出CSV
  • [1] MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey[J]. International Journal of Computer Vision, 2021, 129(1): 23-79. doi: 10.1007/s11263-020-01359-2
    [2] ZITOVÁ B, FLUSSER J. Image registration methods: A survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000. doi: 10.1016/S0262-8856(03)00137-9
    [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [4] MA J Y, ZHAO J, MA Y, et al. Non-rigid visible and infrared face registration via regularized Gaussian fields criterion[J]. Pattern Recognition, 2015, 48(3): 772-784. doi: 10.1016/j.patcog.2014.09.005
    [5] YE Y X, SHAN J, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2941-2958. doi: 10.1109/TGRS.2017.2656380
    [6] CHEN Y J, ZHANG X W, ZHANG Y N, et al. Visible and infrared image registration based on region features and edginess[J]. Machine Vision and Applications, 2018, 29(1): 113-123. doi: 10.1007/s00138-017-0879-6
    [7] LI J Y, HU Q W, AI M Y. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 29: 3296-3310.
    [8] ARAR M, GINGER Y, DANON D, et al. Unsupervised multi-modal image registration via geometry preserving image-to-image translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 13407-13416.
    [9] PIELAWSKI N, WETZER E, ÖFVERSTEDT J, et al. CoMIR: Contrastive multimodal image representation for registration[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 1-21.
    [10] YI K M, TRULLS E, LEPETIT V, et al. LIFT: Learned invariant feature transform[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 467-483.
    [11] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 337-33712.
    [12] LI K H, WANG L G, LIU L, et al. Decoupling makes weakly supervised local feature better[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 15817-15827.
    [13] SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: Learning feature matching with graph neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4937-4946.
    [14] SHI Y, CAI J X, SHAVIT Y, et al. ClusterGNN: Cluster-based coarse-to-fine graph neural network for efficient feature matching[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 12507-12516.
    [15] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
    [16] CUTURI M. Sinkhorn distance: Lightspeed computation of optimal transport[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2013: 1-9.
    [17] KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[C]//Proceedings of 2020 International Conference on Machine Learing (ICML). New York: ACM Press, 2020: 1-10.
    [18] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net: a trainable CNN for joint description and detection of local features[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8084-8093.
    [19] QUAN D, WANG S, NING H Y, et al. Element-wise feature relation learning network for cross-spectral image patch matching[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3372-3386. doi: 10.1109/TNNLS.2021.3052756
    [20] RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery: A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34: 187-203. doi: 10.1016/j.jvcir.2015.11.002
    [21] ROCCO I, ARANDJELOVIC R, SIVIC J. Convolutional neural network architecture for geometric matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2553-2567. doi: 10.1109/TPAMI.2018.2865351
    [22] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. New York: Cambridge University Press, 2004: 117-123.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  191
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-09-08
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答