留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力引导和多样本决策的舰船检测方法

吕奕龙 苟瑶 李敏 何玉杰 邢宇航

吕奕龙,苟瑶,李敏,等. 基于注意力引导和多样本决策的舰船检测方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):202-213 doi: 10.13700/j.bh.1001-5965.2022.1004
引用本文: 吕奕龙,苟瑶,李敏,等. 基于注意力引导和多样本决策的舰船检测方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):202-213 doi: 10.13700/j.bh.1001-5965.2022.1004
LYU Y L,GOU Y,LI M,et al. Ship detection method based on attentional guidance and multi-sample decision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):202-213 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1004
Citation: LYU Y L,GOU Y,LI M,et al. Ship detection method based on attentional guidance and multi-sample decision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):202-213 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1004

基于注意力引导和多样本决策的舰船检测方法

doi: 10.13700/j.bh.1001-5965.2022.1004
基金项目: 

国家自然科学基金(62006240) 

详细信息
    通讯作者:

    E-mail:limin301908@163.com

  • 中图分类号: TP37;TP753

Ship detection method based on attentional guidance and multi-sample decision

Funds: 

National Natural Science Foundation of China (62006240) 

More Information
  • 摘要:

    单阶段目标检测方法具有训练速度快、检测时间短的特点,然而其特征金字塔网络(FPN)难以抑制合成孔径雷达(SAR)舰船图像的背景和噪声信息,且检测头存在预测误差。针对该问题,提出一种基于注意力引导和多样本决策的检测方法,用于SAR舰船检测。提出一种注意力引导网络,将其添加至特征金字塔的最高层,使其抑制背景和噪声干扰,从而提升特征的表示能力。提出多样本决策网络,使其参与目标位置的预测。该网络通过增加回归分支中输出的样本数量,缓解预测误差对检测结果的影响。设计了一种新颖的最大似然损失函数。该损失函数利用多样本决策网络中输出的样本构造出最大似然函数,用于规范决策网络的训练,进一步提升目标定位的精度。以RetinaNet网络模型为基线方法,相较于基线方法及目前先进的目标检测方法,所提方法在舰船检测数据集SSDD上表现出最高的检测精度,AP达到52.8 %。相比基线方法,所提方法在AP评价指标上提升了3.4%~5.7%,且训练参数量仅增加2.03×106,帧率仅降低0.5帧/s。

     

  • 图 1  特征金字塔网络架构

    Figure 1.  Structure of the feature pyramid network

    图 2  回归分支上16个输出结果的统计图

    Figure 2.  Statistical graph of 16 output results on the regression branch

    图 3  本文方法的结构

    Figure 3.  Structure of the proposed method

    图 4  注意力引导网络结构

    Figure 4.  Structure of attention-guided network

    图 5  本文方法与RetinaNet方法的结构

    Figure 5.  Structure of the proposed method and RetinaNet method

    图 6  本文方法与RetinaNet方法在图像上的关注点

    Figure 6.  Attention of the proposed method and RetinaNet method on some images

    图 7  多样本决策网络上16个输出结果的统计图

    Figure 7.  Statistical graph of 16 output results on the multi-samples decision network

    图 8  不同方法的检测结果

    Figure 8.  Results of different methods

    表  1  实验硬件环境

    Table  1.   Experimental hardware environment

    类别 环境条件
    CPU intel(R) xeon(R) silver 4110
    显卡 TITAN RTX (24 GB)
    操作系统 Ubuntu 18.04
    深度学习框架 Pytorch 1.6.0
    CUDA版本 CUDA 11.2
    cuDNN版本 cuDNN 7.4.2
    运行环境 Pycharm 2021.01
    脚本语言 Python3.7
    下载: 导出CSV

    表  2  不同样本量的影响

    Table  2.   Effect of different sample size

    n AP 参数量 浮点运算次数
    1 49.6 36.88×106 205.13×109
    16 52.8 38.13×106 231.68×109
    30 48 39.29×106 256.46×109
    50 12.8 40.95×106 291.86×109
    100 45.1×106 380.36×109
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Results of ablation experiments

    注意力
    引导网络
    多样本
    决策网络
    最大似然
    损失函数
    AP 参数量 浮点运
    算次数
    帧率/
    (帧·s−1
    × × × 48.8 36.1×106 204.36×109 16.2
    × × 49.6 36.88×106 205.13×109 15.5
    × × 50.2 37.35×106 230.91×109 15.6
    × 51.3 37.35×106 230.91×109 15.7
    52.8 38.13×106 231.68×109 15.7
    下载: 导出CSV

    表  4  特征金字塔输出通道数对检测性能的影响

    Table  4.   Influence of the number of output channels of feature pyramid on the detection performance

    输出通道数AP参数量浮点运算次数
    6452.230.02×106196.71×109
    12848.332.17×106206.55×109
    25652.837.35×106230.91×109
    5125251.24×106298.26×109
    下载: 导出CSV

    表  5  检测头卷积层数对检测性能的影响

    Table  5.   Influence of convolution layer number of detection head on detection performance

    检测头卷积层数AP参数量浮点运算次数
    153.733.81×106155.36×109
    253.634.99×106180.54×109
    352.636.17×106205.73×109
    452.837.35×106230.91×109
    下载: 导出CSV

    表  6  消融实验结果

    Table  6.   Results of ablation experiments

    方法 骨干网络类型 训练策略 AP AP50 AP75 APS APM APL
    RetinaNet ResNet-50 48.8 86.7 49.5 46.2 56 31.2
    RetinaNet ResNet-50 53.8 91.5 58.1 49.6 63 38.6
    RetinaNet ResNet-101 48.9 88.3 48.7 45.7 56.3 33.3
    RetinaNet ResNet-101 53.8 91.7 58.6 48.9 63.5 46.0
    本文方法 ResNet-50 52.8 89.4 57.2 50.7 58.9 41.1
    本文方法 ResNet-50 57.2 91.8 67.1 53.5 65.4 58.8
    本文方法 ResNet-101 54.6 89.5 61.8 51.3 62.0 49.9
    本文方法 ResNet-101 57.5 93.1 64.1 53.3 65.6 60.3
    下载: 导出CSV

    表  7  不同检测方法的对比

    Table  7.   Comparison of different detection methods

    方法 骨干网络类型 训练策略 AP AP50 AP75 APS APM APL 参数量 浮点运算次数 帧率/(帧·s−1
    FoveaBox ResNet-50 50.0 88.0 52.9 49.0 54.3 33.5 36.01×106 202.39×109 11.4
    NAS-FCOS ResNet-50 46.1 84.7 47.5 47 46.9 34.5 38.66×106 191.81×109 15.3
    ATSS ResNet-50 52.4 89.3 58.5 52 56.6 36.8 31.89×106 201.33×109 15.6
    GFL ResNet-50 43.6 80.1 44.3 45 43.2 34 32.03×106 204.42×109 16.8
    PISA ResNet-50 50.6 88.3 56.0 47.8 57.2 29.8 36.1×106 204.36×109 16.1
    PAA ResNet-50 52.7 92.0 55.0 49 61.4 37 31.89×106 201.33×109 9.9
    RetinaNet ResNet-50 48.8 86.7 49.5 46.2 56 31.2 36.1×106 204.36×109 16.2
    本文方法 ResNet-50 52.8 89.4 57.2 50.7 58.9 41.1 38.13×106 231.68×109 15.7
    下载: 导出CSV
  • [1] DU L, DAI H, WANG Y, et al. Target discrimination based on weakly supervised learning for high-resolution SAR images in complex scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 461-472. doi: 10.1109/TGRS.2019.2937175
    [2] SHAHZAD M, MAURER M, FRAUNDORFER F, et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1100-1116. doi: 10.1109/TGRS.2018.2864716
    [3] HUANG L Q, LIU B, LI B Y, et al. OpenSARShip: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195-208. doi: 10.1109/JSTARS.2017.2755672
    [4] ZHANG Z M, WANG H P, XU F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177-7188. doi: 10.1109/TGRS.2017.2743222
    [5] YANG G, LI H C, YANG W, et al. Unsupervised change detection of SAR images based on variational multivariate Gaussian mixture model and Shannon entropy[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 826-830. doi: 10.1109/LGRS.2018.2879969
    [6] GIERULL C H. Demystifying the capability of sublook correlation techniques for vessel detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2031-2042. doi: 10.1109/TGRS.2018.2870716
    [7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
    [9] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 9626-9635.
    [10] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [11] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2261-2269.
    [12] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1800-1807.
    [13] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 5987-5995.
    [14] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [16] GHIASI G, LIN T Y, LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 7029-7038.
    [17] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 640-651.
    [18] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: Unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 7369-7378.
    [19] 李晨瑄, 顾佼佼, 王磊, 等. 多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(10): 2006-2019.

    LI C X, GU J J, WANG L, et al. Warship' s vital parts detection algorithm based on lightweight Anchor-Free network with multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2006-2019(in Chinese).
    [20] 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841-851. doi: 10.12000/JR19111

    ZHANG X L, ZHANG T W, SHI J, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841-851 (in Chinese). doi: 10.12000/JR19111
    [21] JIAO J, ZHANG Y, SUN H, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881-20892. doi: 10.1109/ACCESS.2018.2825376
    [22] ZHANG T W, ZHANG X L, SHI J, et al. Balanced feature pyramid network for ship detection in synthetic aperture radar images[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2020: 1-5.
    [23] CHEN S Q, ZHAN R H, WANG W, et al. Learning slimming SAR ship object detector through network pruning and knowledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1267-1282.
    [24] FU J M, SUN X, WANG Z R, et al. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1331-1344. doi: 10.1109/TGRS.2020.3005151
    [25] 张冬冬, 王春平, 付强. 基于Anchor-Free的光学遥感舰船关重部位检测算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(4): 1365-1374.

    ZHANG D D, WANG C P, FU Q. Ship’s critical part detection algorithm based on Anchor-Free in optical remote sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1365-1374(in Chinese).
    [26] ZHANG T W, ZHANG X L, LI J W, et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690
    [27] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 740-755.
    [28] KONG T, SUN F C, LIU H P, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. doi: 10.1109/TIP.2020.3002345
    [29] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 9756-9765.
    [30] LI X, WANG W H, WU L J, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[EB/OL]. (2020-06-08)[2022-12-10]. http://doi.org/10.48550/arXiv.2006.04388.
    [31] CAO Y H, CHEN K, LOY C C, et al. Prime sample attention in object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11580-11588.
    [32] KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 355-371.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  167
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-24
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答