留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GPSSA算法的复杂地形多无人机航迹规划

闫少强 杨萍 刘卫东 李新其 雷剑 赵超跃

闫少强,杨萍,刘卫东,等. 基于GPSSA算法的复杂地形多无人机航迹规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):303-313 doi: 10.13700/j.bh.1001-5965.2022.0984
引用本文: 闫少强,杨萍,刘卫东,等. 基于GPSSA算法的复杂地形多无人机航迹规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):303-313 doi: 10.13700/j.bh.1001-5965.2022.0984
YAN S Q,YANG P,LIU W D,et al. Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):303-313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0984
Citation: YAN S Q,YANG P,LIU W D,et al. Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):303-313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0984

基于GPSSA算法的复杂地形多无人机航迹规划

doi: 10.13700/j.bh.1001-5965.2022.0984
基金项目: 

国家自然科学基金(61703411) 

详细信息
    通讯作者:

    E-mail:yyp_ing@163.com

  • 中图分类号: TP301.6

Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm

Funds: 

National Natural Science Foundation of China (61703411) 

More Information
  • 摘要:

    针对多无人机协同航迹规划求解时间要求高、收敛难等问题,提出了一种基于博弈夺食机制和自毁机制的改进麻雀搜索算法(GPSSA)的多无人机协同航迹规划方法。利用分层规划思想分别建立单无人机航迹规划模型和多无人机协同航迹规划模型,将其转化为优化问题。提出博弈夺食机制和自毁机制用以改进麻雀算法,防止其快速丢失种群多样性,增强原算法逃脱局部极值吸引的能力,使得算法搜索方式更加灵活。利用改进麻雀算法对模型进行求解,仿真结果表明,GPSSA算法能够快速完成满足约束的航迹规划,且具有更好的收敛速度、寻优精度和算法鲁棒性。

     

  • 图 1  综合威胁约束

    Figure 1.  Comprehensive threat constraint

    图 2  转弯角、爬升角、偏转角

    Figure 2.  Turning angle, climbing angle and deflection angle

    图 3  时间协同约束

    Figure 3.  Time collaboration constraint

    图 4  博弈夺食机制原理

    Figure 4.  Principle of game predatory mechanism

    图 5  多UAV协同航迹规划框架

    Figure 5.  Multi-UAV cooperative track planning framework

    图 6  三次B样条曲线平滑处理

    Figure 6.  Cubic B-spline curve smoothing

    图 7  三维地形环境

    Figure 7.  3D terrain environment

    图 8  单UAV航迹规划仿真结果

    Figure 8.  Simulation results of single UAV track planning

    图 9  多UAV协同航迹规划仿真结果

    Figure 9.  Simulation results of multi-UAV cooperative track planning

    表  1  算法参数

    Table  1.   Algorithm parameters

    算法 参数
    PSO c1=2
    c2=2
    Wmix=0.2
    Wmax=0.9
    DE C=0.2
    Fmin=0.2
    Fmax=0.8
    GWO a=(2→0)
    SSA S=0.8
    P=0.2
    GPSSA S=0.8
    P=0.2
    T=M/20
    下载: 导出CSV

    表  2  单UAV航迹规划仿真结果

    Table  2.   Simulation results of single UAV track planning

    算法 算法平均耗时/s 最优值 最差值 平均值 标准差
    PSO 35.635 4 80.824 0 105.188 7 88.608 0 9.129 1
    DE 37.275 9 80.620 3 104.277 9 87.412 7 8.164 2
    GWO 38.883 7 80.812 4 105.188 7 86.425 2 7.908 0
    SSA 39.302 1 79.625 2 107.175 7 92.532 5 9.319 7
    GPSSA 40.165 2 76.098 8 89.349 8 82.408 4 3.687 2
    下载: 导出CSV

    表  3  单UAV航迹规划层结果

    Table  3.   Results of single UAV track planning layer

    算法 UAV 最优值 最差值 平均值 标准差
    SSA UAV-1 112.675 0 118.649 5 115.701 5 2.439 7
    UAV-2 71.428 5 78.462 5 74.902 2 2.872 3
    UAV-3 75.642 5 82.067 3 79.826 8 2.961 2
    LASSA UAV-1 83.123 9 110.111 0 96.617 5 11.017 0
    UAV-2 75.792 2 84.845 5 80.318 9 3.696 0
    UAV-3 78.402 9 88.544 8 83.473 9 4.140 4
    GPSSA UAV-1 82.193 5 92.160 2 87.557 0 4.104 2
    UAV-2 79.716 3 83.056 2 81.801 5 1.484 6
    UAV-3 71.292 6 87.313 1 76.845 8 7.406 1
    下载: 导出CSV

    表  4  多UAV协同航迹规划层结果

    Table  4.   Results of multi-UAV cooperative track planning layer

    算法 UAV 航迹代价 航迹长度/km 到达时间/s 协同到达时间/s 协同代价
    SSA UAV-1 115.78 215.32 [215.32,430.64] [215.32,297.18] 487.98
    UAV-2 74.82 148.59 [148.59,297.18]
    UAV-3 82.07 160.35 [160.35,320.71]
    LASSA UAV-1 83.12 163.57 [163.57,327.14] [163.57,300.34] 411.03
    UAV-2 75.79 150.17 [150.17,300.34]
    UAV-3 88.54 157.12 [157.12,314.24]
    GPSSA UAV-1 82.19 163.78 [163.78,327.56] [163.78,284.04] 399.90
    UAV-2 82.63 162.86 [162.86,325.73]
    UAV-3 71.29 142.02 [142.02,284.04]
    下载: 导出CSV
  • [1] 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. doi: 10.3969/j.issn.1001-506X.2021.01.13

    JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111(in Chinese). doi: 10.3969/j.issn.1001-506X.2021.01.13
    [2] LAVALLE S M, KUFFNER J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5): 378-400. doi: 10.1177/02783640122067453
    [3] ZHONG X Y, TIAN J, HU H S, et al. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment[J]. Journal of Intelligent & Robotic Systems, 2020, 99(1): 65-77.
    [4] ALMURIB H A F, NATHAN P T, KUMAR T N. Control and path planning of quadrotor aerial vehicles for search and rescue[C]// SICE Annual Conference. Piscataway: IEEE Press, 2011: 700-705.
    [5] 王伟, 王华. 基于约束人工势场法的弹载飞行器实时避障航迹规划[J]. 航空动力学报, 2014, 29(7): 1738-1743.

    WANG W, WANG H. Real-time obstacle avoidance trajectory planning for missile borne air vehicle based on constrained artificial potential field method[J]. Journal of Aerospace Power, 2014, 29(7): 1738-1743(in Chinese).
    [6] CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47(6): 1407-1420. doi: 10.1080/00207721.2014.929191
    [7] SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382-18390. doi: 10.1109/ACCESS.2017.2746752
    [8] GALVEZ R L, DADIOS E P, BANDALA A A. Path planning for quadrotor UAV using genetic algorithm[C]// 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). Piscataway: IEEE Press, 2014: 1-6.
    [9] WANG X F, ZHAO H, HAN T, et al. A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem[J]. Applied Soft Computing, 2019, 78: 240-260. doi: 10.1016/j.asoc.2019.02.037
    [10] ZHANG C, ZHEN Z Y, WANG D B, et al. UAV path planning method based on ant colony optimization[C]// 2010 Chinese Control and Decision Conference. Piscataway: IEEE Press, 2010: 3790-3792.
    [11] PHUNG M D, HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing, 2021, 107: 107376. doi: 10.1016/j.asoc.2021.107376
    [12] PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms[J]. Neural Computing and Applications, 2022, 34(1): 153-170. doi: 10.1007/s00521-021-06569-4
    [13] BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171-1187. doi: 10.1109/OJCOMS.2021.3081996
    [14] NGUYEN K K, DUONG T Q, DO-DUY T, et al. 3D UAV trajectory and data collection optimisation via deep reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(4): 2358-2371. doi: 10.1109/TCOMM.2022.3148364
    [15] SHORAKAEI H, VAHDANI M, IMANI B, et al. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]. Robotica, 2016, 34(4): 823-836. doi: 10.1017/S0263574714001878
    [16] PEHLIVANOGLU Y V, PEHLIVANOGLU P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems[J]. Applied Soft Computing, 2021, 112: 107796. doi: 10.1016/j.asoc.2021.107796
    [17] SAEED R A, OMRI M, ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications, 2022, 34(12): 10133-10155. doi: 10.1007/s00521-022-06998-9
    [18] CHOI Y J, RAHIM T, RAMATRYANA I N A, et al. Improved CNN-based path planning for stairs climbing in autonomous UAV with LiDAR sensor[C]// 2021 International Conference on Electronics, Information, and Communication (ICEIC). Piscataway: IEEE Press, 2021: 1-7.
    [19] ZHANG D F, DUAN H B. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313: 229-246. doi: 10.1016/j.neucom.2018.06.032
    [20] 韩统, 汤安迪, 周欢, 等. 基于 LASSA 算法的多无人机协同航迹规划方法[J]. 系统工程与电子技术, 2022, 44(1): 233-241.

    HAN T, TANG A D, ZHOU H, et al. Multi UAV cooperative path planning method based on Lassa algorithm[J] Systems Engineering and Electronic Technology, 2022, 44 (1): 233-241(in Chinese).
    [21] JAMSHIDI V, NEKOUKAR V, REFAN M H. Real time UAV path planning by parallel grey wolf optimization with align coefficient on CAN bus[J]. Cluster Computing, 2021, 24(3): 2495-2509. doi: 10.1007/s10586-021-03276-6
    [22] HE W J, QI X G, LIU L F. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning[J]. Applied Intelligence, 2021, 51(10): 7350-7364. doi: 10.1007/s10489-020-02082-8
    [23] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [24] 闫少强, 杨萍, 朱东林, 等. 基于佳点集的改进麻雀搜索算法[J/OL]. 北京麻豆精品秘 国产传媒学报: 1-13 [2022-03-14]. DOI: 10.13700/j.bh.1001-5965.2021.0730.

    YAN S Q, YANG P, ZHU D L, et al. Improved sparrow search algorithm based on good point set[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13 [2022-03-14]. DOI: 10.13700/j.bh.1001-5965.2021.0730(in Chinese).
    [25] YAN S Q, YANG P, ZHU D L, et al. Improved sparrow search algorithm based on iterative local search[J]. Computational Intelligence and Neuroscience, 2021: 6860503.
    [26] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
    [27] PRICE K V. Differential evolution[M]// Intelligent Systems Reference Library. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 187-214.
    [28] EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection[J]. Neurocomputing, 2016, 172: 371-381. doi: 10.1016/j.neucom.2015.06.083
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  218
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 录用日期:  2023-03-24
  • 网络出版日期:  2023-04-12
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答