留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优探测航线椭圆拟合的战斗巡逻规划方法

李乐言 杨任农 王瑛 李寰宇 吴傲 岳龙飞

李乐言,杨任农,王瑛,等. 基于最优探测航线椭圆拟合的战斗巡逻规划方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):293-302 doi: 10.13700/j.bh.1001-5965.2022.0978
引用本文: 李乐言,杨任农,王瑛,等. 基于最优探测航线椭圆拟合的战斗巡逻规划方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):293-302 doi: 10.13700/j.bh.1001-5965.2022.0978
LI L Y,YANG R N,WANG Y,et al. CAP planning method based on elliptic fitting of optimal detection routes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):293-302 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0978
Citation: LI L Y,YANG R N,WANG Y,et al. CAP planning method based on elliptic fitting of optimal detection routes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):293-302 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0978

基于最优探测航线椭圆拟合的战斗巡逻规划方法

doi: 10.13700/j.bh.1001-5965.2022.0978
基金项目: 

国家社会科学基金(2022-SKJJ-A-002) 

详细信息
    通讯作者:

    E-mail:yingwangkgd@163.com

  • 中图分类号: V323.1

CAP planning method based on elliptic fitting of optimal detection routes

Funds: 

National Social Science Fund of China (2022-SKJJ-A-002) 

More Information
  • 摘要:

    针对远海弱情报支援背景下的空中编队战斗巡逻规划问题,提出了一种新的基于最优探测航线椭圆拟合的巡逻空域规划方法。以协同概率探测面积作为遗传算法的适应度函数,求解最优飞机协同探测航线,根据初始航路点列的统计学特征,提出了基于几何距离的双点移除椭圆拟合方法,求解航空兵实际可用的椭圆航线及对应巡逻空域。仿真结果表明,编队按照规划的矩形巡逻空域和椭圆航线进行战斗巡逻,可保持对总任务区域82.16%的协同探测,与最优雷达探测航线的平均实时探测范围相比仅下降1.93%,且探测盲区时间空窗小。规划结果能显著降低飞行员的认知载荷,具有较好的实用价值和现实意义。

     

  • 图 1  飞机受力分析

    Figure 1.  Aircraft stress analysis

    图 2  飞机$ \Delta t $时间的可达集

    Figure 2.  Flight’s reachable range within $ \Delta t $

    图 3  任务区栅格化示意图

    Figure 3.  Rasterized diagram of mission area

    图 4  巡逻空域及椭圆航线示意图

    Figure 4.  Patrol airspace and elliptical route

    图 5  仿真步长对末端收敛特性的影响

    Figure 5.  Effect of simulation step size on terminal convergence characteristics

    图 6  交叉及变异过程

    Figure 6.  Crossover and mutation process

    图 7  基于最优探测航线椭圆拟合的战斗巡逻规划方法流程

    Figure 7.  CAP planning method flow based on elliptic fitting of optimal detection route

    图 8  任务区示意图

    Figure 8.  Mission area

    图 9  雷达探测能力曲线

    Figure 9.  Radar detection capability curve

    图 10  航线规划仿真结果

    Figure 10.  Route planning simulation results

    图 11  3种椭圆拟合方法效果对比

    Figure 11.  Effect comparison of three elliptic fitting methods

    图 12  4种编队航线的椭圆拟合结果

    Figure 12.  Elliptic fitting results of four formation routes

    图 13  战斗巡逻空域及椭圆航线规划结果

    Figure 13.  CAP airspace and elliptical route planning results

    图 14  不同时刻编队协同探测范围变化示意图

    Figure 14.  Cooperative detection range variation of formation at different time

    图 15  编队协同探测能力示意图

    Figure 15.  Formation cooperative detection capability

    图 16  五机编队椭圆航线与最优雷达探测航线概率探测面积对比

    Figure 16.  Comparison of probability detection areas between elliptical route and optimal radar detection route of five aircraft formation

    表  1  雷达参数

    Table  1.   Radar parameters

    机型 发射功率/W 发射增益/dB 接收机带宽/Hz 接收增益/dB 信号波长/m 脉压比 脉冲累积数 环境温度/K 噪声系数/dB 损耗/dB
    预警机 2.0×102 40 5.0×106 40 0.3 1 30 293 2 6
    歼击机 1.0×102 35 5.0×106 35 0.03 1 30 293 3 8
    下载: 导出CSV

    表  2  飞机性能参数

    Table  2.   Aircraft performance parameters

    速度/(km·s−1 最大滚转角/rad 最小转弯半径/m 10 s最大偏航角/rad
    0.2 π/6 7070 0.1415
    下载: 导出CSV

    表  3  遗传算法参数

    Table  3.   Genetic algorithm parameters

    N L pc pm g nr
    30 [2,4,5,6] 0.9 0.01 30 2
    下载: 导出CSV

    表  4  飞机初始位置和角度信息

    Table  4.   Initial aircraft position and angle information

    数量 初始位置/km 初始角度/rad
    2 [0,0;141.4,553] [0;0]
    4 [0,0;0,0;141.4,553;141.4,553] [0;0;0;0]
    5 [0,0;141.4,553;141.4,553;244.3,347.2;244.3,347.2] [0;0;0;0;0]
    6 [0,0;0,0;141.4,553;141.4,553;244.3,347.2;244.3,347.2] [0;0;0;0;0;0]
    下载: 导出CSV

    表  5  巡逻空域及椭圆航线详细信息

    Table  5.   Patrol airspace and elliptical route details

    编号 空域顶点
    坐标/km
    航线
    中心点/km
    长轴长/km 短轴长/km 偏转角/rad
    1 (344.0,424.5) (318.1,432.9) 14.6 13.9 0.46
    (308.8,407.2)
    (292.1,441.3)
    (327.4,458.5)
    2 (390.5,323.2) (348.9,315.1) 30.2 18.7 0.79
    (340.8,273.4)
    (307.3,306.9)
    (357.0,356.7)
    3 (460.6,293.5) (437.4,260.2) 28.3 18.2 1.57
    (460.6,226.9)
    (414.2,226.9)
    (414.2,293.5)
    4 (369.8,238.0) (370.3,201.6) 23.1 18.1 2.27
    (406.1,195.2)
    (370.8,165.2)
    (334.5,208.0)
    5 (334.7,118.0) (308.2,107.1) 16.2 14.6 1.12
    (316.4,79.7)
    (281.7,96.3)
    (300.1,134.6)
    下载: 导出CSV
  • [1] YANG W D, WU M G, WEN X X, et al. A joint optimization method for cooperative detection resources based on channel capacity[J]. International Journal of Aerospace Engineering, 2022: 8418426.
    [2] CAO Y, WEI W Y, BAI Y, et al. Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm[J]. Cluster Computing, 2019, 22(3): 5175-5184.
    [3] 樊长虹, 陈卫东, 席裕庚. 未知环境下移动机器人安全路径规划的一种神经网络方法[J]. 自动化学报, 2004, 30(6): 816-823.

    FAN C H, CHEN W D, XI Y G. A neural networks-based approach to safe path planning of mobile robot in unknown environment[J]. Acta Automatica Sinica, 2004, 30(6): 816-823 (in Chinese).
    [4] 侯岳奇, 梁晓龙, 何吕龙, 等. 未知环境下无人机集群协同区域搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(2): 347-356.

    HOU Y Q, LIANG X L, HE L L, et al. Cooperative area search algorithm for UAV swarm in unknown environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 347-356 (in Chinese).
    [5] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(4): 814-827.

    WU A, YANG R N, LIANG X L, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 814-827(in Chinese).
    [6] TANG J J, ALAM S, LOKAN C, et al. A multi-objective approach for Dynamic Airspace Sectorization using agent based and geometric models[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 89-121. doi: 10.1016/j.trc.2011.08.008
    [7] 于驷男, 周锐, 夏洁, 等. 多无人机协同搜索区域分割与覆盖[J]. 北京麻豆精品秘 国产传媒学报, 2015, 41(1): 167-173.

    YU S N, ZHOU R, XIA J, et al. Decomposition and coverage of multi-UAV cooperative search area[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 167-173 (in Chinese).
    [8] CHEN Y Z, ZHANG D F. Dynamic airspace configuration method based on a weighted graph model[J]. Chinese Journal of Aeronautics, 2014, 27(4): 903-912. doi: 10.1016/j.cja.2014.06.009
    [9] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47-55. doi: 10.1016/j.ast.2011.02.006
    [10] GURUPRASAD K R, GHOSE D. Automated multi-agent search using centroidal voronoi configuration[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 420-423. doi: 10.1109/TASE.2010.2072920
    [11] 方学立, 杨永祥. 雷达与雷达网的目标检测威力模型[J]. 现代雷达, 2008, 30(7): 18-20. doi: 10.3969/j.issn.1004-7859.2008.07.003

    FANG X L, YANG Y X. Radar target detection range model based on detection probability[J]. Modern Radar, 2008, 30(7): 18-20 (in Chinese). doi: 10.3969/j.issn.1004-7859.2008.07.003
    [12] 王宁, 李哲, 梁晓龙, 等. 基于搜索意图交互的无人机集群协同搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(3): 454-463.

    WANG N, LI Z, LIANG X L, et al. Cooperative search algorithm for UAV swarm based on search intention interaction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 454-463 (in Chinese).
    [13] 单博楠, 傅宇龙, 叶海军, 等. 预警机典型巡逻航线下探测性能分析及评估[J]. 中国电子科学研究院学报, 2019, 14(6): 625-633. doi: 10.3969/j.issn.1673-5692.2019.06.012

    SHAN B N, FU Y L, YE H Q, et al. Analysis and modeling for typical patral routes of early warning aircraft[J]. Journal of CAEIT, 2019, 14(6): 625-633(in Chinese). doi: 10.3969/j.issn.1673-5692.2019.06.012
    [14] 徐鑫宇, 万路军, 陈平, 等. 防御性制空截击中警戒巡逻空域规划建模[J]. 系统工程与电子技术, 2022, 44(5): 1589-1599. doi: 10.12305/j.issn.1001-506X.2022.05.20

    XU X Y, WAN L J, CHEN P, et al. Modeling of alert patrol airspace planning in defensive counterair interception operation[J]. Systems Engineering and Electronics, 2022, 44(5): 1589-1599 (in Chinese). doi: 10.12305/j.issn.1001-506X.2022.05.20
    [15] 李艳庆. 基于遗传算法和深度强化学习的多无人机协同区域监视的航路规划[D]. 西安: 西安电子科技大学, 2018.

    LI Y Q. Route planning of multi-UAV cooperative area surveillance based on genetic algorithm and deep reinforcement learning[D]. Xi’an: Xidian University, 2018 (in Chinese).
    [16] 郭斯羽, 吴延冬. 去除离群点的改进椭圆拟合算法[J]. 计算机科学, 2022, 49(4): 188-194. doi: 10.11896/jsjkx.210200040

    GUO S Y, WU Y D. Improved ellipse fitting algorithm with outlier removal[J]. Computer Science, 2022, 49(4): 188-194 (in Chinese). doi: 10.11896/jsjkx.210200040
    [17] AHN S J, RAUH W, WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12): 2283-2303. doi: 10.1016/S0031-3203(00)00152-7
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  129
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 录用日期:  2023-02-20
  • 网络出版日期:  2023-02-28
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答