-
摘要:
针对远海弱情报支援背景下的空中编队战斗巡逻规划问题,提出了一种新的基于最优探测航线椭圆拟合的巡逻空域规划方法。以协同概率探测面积作为遗传算法的适应度函数,求解最优飞机协同探测航线,根据初始航路点列的统计学特征,提出了基于几何距离的双点移除椭圆拟合方法,求解航空兵实际可用的椭圆航线及对应巡逻空域。仿真结果表明,编队按照规划的矩形巡逻空域和椭圆航线进行战斗巡逻,可保持对总任务区域82.16%的协同探测,与最优雷达探测航线的平均实时探测范围相比仅下降1.93%,且探测盲区时间空窗小。规划结果能显著降低飞行员的认知载荷,具有较好的实用价值和现实意义。
Abstract:In view of the combat air patrol (CAP) planning problem in air formation under the background of weak intelligence support in the far sea, a new patrol airspace planning method based on the elliptic fitting of the optimal detection route was proposed. First, the cooperative probability detection area was used as the fitness function of the genetic algorithm to solve the optimal cooperative detection route of the aircraft. Then, according to the statistical characteristics of the initial route points, a two-point removal elliptic fitting method based on geometric distance was used to solve the actual available elliptical route and the corresponding patrol airspace for pilots. The simulation results show that the formation can maintain 82.16% cooperative detection of the total mission area in CAP according to the planned rectangular patrol airspace and elliptical route, and the average real-time detection range only decreases by 1.93% compared with the optimal radar detection route. The time window in the detection blind area is small. The planning results greatly reduce the cognitive load of pilots and have practical value.
-
表 1 雷达参数
Table 1. Radar parameters
机型 发射功率/W 发射增益/dB 接收机带宽/Hz 接收增益/dB 信号波长/m 脉压比 脉冲累积数 环境温度/K 噪声系数/dB 损耗/dB 预警机 2.0×102 40 5.0×106 40 0.3 1 30 293 2 6 歼击机 1.0×102 35 5.0×106 35 0.03 1 30 293 3 8 表 2 飞机性能参数
Table 2. Aircraft performance parameters
速度/(km·s−1) 最大滚转角/rad 最小转弯半径/m 10 s最大偏航角/rad 0.2 π/6 7070 0.1415 表 3 遗传算法参数
Table 3. Genetic algorithm parameters
N L pc pm g nr 30 [2,4,5,6] 0.9 0.01 30 2 表 4 飞机初始位置和角度信息
Table 4. Initial aircraft position and angle information
数量 初始位置/km 初始角度/rad 2 [0,0;141.4,553] [0;0] 4 [0,0;0,0;141.4,553;141.4,553] [0;0;0;0] 5 [0,0;141.4,553;141.4,553;244.3,347.2;244.3,347.2] [0;0;0;0;0] 6 [0,0;0,0;141.4,553;141.4,553;244.3,347.2;244.3,347.2] [0;0;0;0;0;0] 表 5 巡逻空域及椭圆航线详细信息
Table 5. Patrol airspace and elliptical route details
编号 空域顶点
坐标/km航线
中心点/km长轴长/km 短轴长/km 偏转角/rad 1 (344.0,424.5) (318.1,432.9) 14.6 13.9 0.46 (308.8,407.2) (292.1,441.3) (327.4,458.5) 2 (390.5,323.2) (348.9,315.1) 30.2 18.7 0.79 (340.8,273.4) (307.3,306.9) (357.0,356.7) 3 (460.6,293.5) (437.4,260.2) 28.3 18.2 1.57 (460.6,226.9) (414.2,226.9) (414.2,293.5) 4 (369.8,238.0) (370.3,201.6) 23.1 18.1 2.27 (406.1,195.2) (370.8,165.2) (334.5,208.0) 5 (334.7,118.0) (308.2,107.1) 16.2 14.6 1.12 (316.4,79.7) (281.7,96.3) (300.1,134.6) -
[1] YANG W D, WU M G, WEN X X, et al. A joint optimization method for cooperative detection resources based on channel capacity[J]. International Journal of Aerospace Engineering, 2022: 8418426. [2] CAO Y, WEI W Y, BAI Y, et al. Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm[J]. Cluster Computing, 2019, 22(3): 5175-5184. [3] 樊长虹, 陈卫东, 席裕庚. 未知环境下移动机器人安全路径规划的一种神经网络方法[J]. 自动化学报, 2004, 30(6): 816-823.FAN C H, CHEN W D, XI Y G. A neural networks-based approach to safe path planning of mobile robot in unknown environment[J]. Acta Automatica Sinica, 2004, 30(6): 816-823 (in Chinese). [4] 侯岳奇, 梁晓龙, 何吕龙, 等. 未知环境下无人机集群协同区域搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(2): 347-356.HOU Y Q, LIANG X L, HE L L, et al. Cooperative area search algorithm for UAV swarm in unknown environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 347-356 (in Chinese). [5] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(4): 814-827.WU A, YANG R N, LIANG X L, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 814-827(in Chinese). [6] TANG J J, ALAM S, LOKAN C, et al. A multi-objective approach for Dynamic Airspace Sectorization using agent based and geometric models[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 89-121. doi: 10.1016/j.trc.2011.08.008 [7] 于驷男, 周锐, 夏洁, 等. 多无人机协同搜索区域分割与覆盖[J]. 北京麻豆精品秘 国产传媒学报, 2015, 41(1): 167-173.YU S N, ZHOU R, XIA J, et al. Decomposition and coverage of multi-UAV cooperative search area[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 167-173 (in Chinese). [8] CHEN Y Z, ZHANG D F. Dynamic airspace configuration method based on a weighted graph model[J]. Chinese Journal of Aeronautics, 2014, 27(4): 903-912. doi: 10.1016/j.cja.2014.06.009 [9] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47-55. doi: 10.1016/j.ast.2011.02.006 [10] GURUPRASAD K R, GHOSE D. Automated multi-agent search using centroidal voronoi configuration[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 420-423. doi: 10.1109/TASE.2010.2072920 [11] 方学立, 杨永祥. 雷达与雷达网的目标检测威力模型[J]. 现代雷达, 2008, 30(7): 18-20. doi: 10.3969/j.issn.1004-7859.2008.07.003FANG X L, YANG Y X. Radar target detection range model based on detection probability[J]. Modern Radar, 2008, 30(7): 18-20 (in Chinese). doi: 10.3969/j.issn.1004-7859.2008.07.003 [12] 王宁, 李哲, 梁晓龙, 等. 基于搜索意图交互的无人机集群协同搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(3): 454-463.WANG N, LI Z, LIANG X L, et al. Cooperative search algorithm for UAV swarm based on search intention interaction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 454-463 (in Chinese). [13] 单博楠, 傅宇龙, 叶海军, 等. 预警机典型巡逻航线下探测性能分析及评估[J]. 中国电子科学研究院学报, 2019, 14(6): 625-633. doi: 10.3969/j.issn.1673-5692.2019.06.012SHAN B N, FU Y L, YE H Q, et al. Analysis and modeling for typical patral routes of early warning aircraft[J]. Journal of CAEIT, 2019, 14(6): 625-633(in Chinese). doi: 10.3969/j.issn.1673-5692.2019.06.012 [14] 徐鑫宇, 万路军, 陈平, 等. 防御性制空截击中警戒巡逻空域规划建模[J]. 系统工程与电子技术, 2022, 44(5): 1589-1599. doi: 10.12305/j.issn.1001-506X.2022.05.20XU X Y, WAN L J, CHEN P, et al. Modeling of alert patrol airspace planning in defensive counterair interception operation[J]. Systems Engineering and Electronics, 2022, 44(5): 1589-1599 (in Chinese). doi: 10.12305/j.issn.1001-506X.2022.05.20 [15] 李艳庆. 基于遗传算法和深度强化学习的多无人机协同区域监视的航路规划[D]. 西安: 西安电子科技大学, 2018.LI Y Q. Route planning of multi-UAV cooperative area surveillance based on genetic algorithm and deep reinforcement learning[D]. Xi’an: Xidian University, 2018 (in Chinese). [16] 郭斯羽, 吴延冬. 去除离群点的改进椭圆拟合算法[J]. 计算机科学, 2022, 49(4): 188-194. doi: 10.11896/jsjkx.210200040GUO S Y, WU Y D. Improved ellipse fitting algorithm with outlier removal[J]. Computer Science, 2022, 49(4): 188-194 (in Chinese). doi: 10.11896/jsjkx.210200040 [17] AHN S J, RAUH W, WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12): 2283-2303. doi: 10.1016/S0031-3203(00)00152-7 -


下载: