留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间定位与特征泛化增强的铁路异物跟踪检测

陈永 王镇 周方春

陈永,王镇,周方春. 空间定位与特征泛化增强的铁路异物跟踪检测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):9-18 doi: 10.13700/j.bh.1001-5965.2022.0974
引用本文: 陈永,王镇,周方春. 空间定位与特征泛化增强的铁路异物跟踪检测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):9-18 doi: 10.13700/j.bh.1001-5965.2022.0974
CHEN Y,WANG Z,ZHOU F C. Railway foreign objects tracking detection based on spatial location and feature generalization enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):9-18 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0974
Citation: CHEN Y,WANG Z,ZHOU F C. Railway foreign objects tracking detection based on spatial location and feature generalization enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):9-18 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0974

空间定位与特征泛化增强的铁路异物跟踪检测

doi: 10.13700/j.bh.1001-5965.2022.0974
基金项目: 

国家自然科学基金(62462043,61963023);兰州交通大学重点研发项目(ZDYF2304) 

详细信息
    通讯作者:

    E-mail:edukeylab@126.com

  • 中图分类号: TP391.4

Railway foreign objects tracking detection based on spatial location and feature generalization enhancement

Funds: 

National Natural Science Foundation of China (62462043,61963023); Key Research and Development Project of Lanzhou Jiaotong University (ZDYF2304) 

More Information
  • 摘要:

    针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;利用异物空间位置定位与泛化形态信息,设计空间定位与特征泛化增强模块,增强对复杂场景下位置移动与跟踪轨迹变化目标的检测精度;构建金字塔预测网络,得到红外铁路异物的检测锚框、类别及置信度信息;通过改进类别和置信度显示的DeepSORT跟踪算法,结合卡尔曼滤波与匈牙利算法实现红外弱光环境下铁路异物跟踪检测。实验结果表明:所提算法对铁路异物的跟踪检测精确度达到83.3%,平均检测速度为11.3帧/s;与比较算法相比,所提算法检测精度更高,对红外弱光场景下铁路异物跟踪检测具有较好的性能。

     

  • 图 1  本文算法整体模型框架

    Figure 1.  Model framework of the proposed algorithm

    图 2  本文特征提取网络结构

    Figure 2.  Structure of the proposed feature extraction network

    图 3  G-bneck模块结构

    Figure 3.  Structure of G-bneck module

    图 4  特征可视化比较

    Figure 4.  Feature visualization comparison

    图 5  空间定位与特征泛化增强模块结构

    Figure 5.  Structure of SLFG module

    图 6  空间定位与特征泛化增强变换比较

    Figure 6.  Comparison of SLFG enhancement transform

    图 7  增强显示的跟踪网络检测效果

    Figure 7.  Enhance displayed tracking network detection effect

    图 8  红外铁路异物侵限跟踪检测实验结果

    Figure 8.  Tracking detection experiment results of infrared railway foreign body intrusion

    图 9  红外铁路异物侵限跟踪检测局部放大图

    Figure 9.  Partial enlarged image of infrared railway foreign body intrusion tracking

    图 10  遮挡异物侵限跟踪检测实验结果

    Figure 10.  Tracking detection experiment results of occluded foreign objects intrusion

    图 11  遮挡异物侵限跟踪检测局部放大图

    Figure 11.  Partial enlarged image of occluded foreign object intrusion tracking

    表  1  不同网络参数量与尺寸对比实验结果

    Table  1.   Results of parameter quantity and size comparison experiment under different networks

    网络 参数量/个 计算速度/s 模型尺寸/MB
    Resnet50 32 664 262 0.82 124.60
    CSP-Darknet53 64 040 001 0.94 244.29
    改进后GhostNet(本文) 11 105 445 0.78 42.36
    下载: 导出CSV

    表  2  不同异物跟踪检测算法性能对比

    Table  2.   Performance comparison of different foreign body tracking methods

    算法 多目标检测
    准确度/%
    多目标检测
    精确度/%
    检测速度/
    (帧·s−1
    文献[6] 67.5 68.9 16.9
    文献[11] 78.4 81.5 8.8
    文献[12] 70.6 72.4 9.7
    本文 80.9 83.3 11.3
    下载: 导出CSV

    表  3  模型消融实验比较

    Table  3.   Comparison of ablation experiment

    基准 级联增强
    特征提取
    网络
    空间定位与
    特征泛化
    增强
    金字塔
    预测网络
    所提
    DeepSORT
    网络
    多目标检测
    精确度/%
    59.7
    67.1
    78.6
    83.3
    下载: 导出CSV
  • [1] LI C, XIE Z Y, QIN Y, et al. A multi-scale image and dynamic candidate region-based automatic detection of foreign targets intruding the railway perimeter[J]. Measurement, 2021, 185: 109853. doi: 10.1016/j.measurement.2021.109853
    [2] LI Y D, LIU Y, DONG H, et al. Intrusion detection of railway clearance from infrared images using generative adversarial networks[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 3931-3943.
    [3] WANG Y, LI Y, HAN Q. Vehicle-mounted infrared pedestrian tracking based on scale adaptive kernel correlation filter[J]. IAENG International Journal of Computer Science, 2022, 49(2): 349-356.
    [4] HU J W, LIU R X, CHEN Z H, et al. Octave convolution-based vehicle detection using frame-difference as network input[J]. The Visual Computer, 2023, 39(4): 1503-1515.
    [5] 艾明晶, 单国志, 刘鹏高, 等. 基于朝向约束和重识别特征的目标轨迹关联方法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(6): 957-967.

    AI M J, SHAN G Z, LIU P G, et al. Target trajectory association method based on orientation constraint and re-identification feature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 957-967(in Chinese).
    [6] LI S H, ZHAO L H. A low-cost and fast vehicle detection algorithm with a monocular camera for adaptive driving beam systems[J]. IEEE Access, 2021, 9: 26147-26155. doi: 10.1109/ACCESS.2021.3057862
    [7] YAO T T, HU J C, ZHANG B, et al. Scale and appearance variation enhanced Siamese network for thermal infrared target tracking[J]. Infrared Physics & Technology, 2021, 117: 103825.
    [8] LIU F Y, LIU J, WANG L B. Deep learning and infrared thermography for asphalt pavement crack severity classification[J]. Automation in Construction, 2022, 140: 104383. doi: 10.1016/j.autcon.2022.104383
    [9] XU Y, FAN Q. A lightweight convolutional network for infrared object detection and tracking[J]. Journal of Physics: Conference Series, 2022, 2234(1): 012004. doi: 10.1088/1742-6596/2234/1/012004
    [10] LI G F, CHEN X, LI M J, et al. One-shot multi-object tracking using CNN-based networks with spatial-channel attention mechanism[J]. Optics & Laser Technology, 2022, 153: 108267.
    [11] YANG S D, CHEN Z H, MA X M, et al. Real-time high-precision pedestrian tracking: A detection-tracking-correction strategy based on improved SSD and Cascade R-CNN[J]. Journal of Real-Time Image Processing, 2022, 19(2): 287-302. doi: 10.1007/s11554-021-01183-y
    [12] LEE T Y, JEONG M H, PETER A. Object detection of road facilities using YOLOv3 for high-definition map updates[J]. Sensors and Materials, 2022, 34(1): 251. doi: 10.18494/SAM3732
    [13] CUI F, NING M W, SHEN J W, et al. Automatic recognition and tracking of highway layer-interface using Faster R-CNN[J]. Journal of Applied Geophysics, 2022, 196: 104477. doi: 10.1016/j.jappgeo.2021.104477
    [14] SOLIMAN N F, ALABDULKREEM E A, ALGARNI A D, et al. Efficient deep learning modalities for object detection from infrared images[J]. Computers, Materials & Continua, 2022, 72(2): 2545-2563.
    [15] WU S J, ZHANG K, LI S Y, et al. Aircraft tracking in infrared imagery with adaptive learning and interference suppression[J]. Electronics Letters, 2021, 57(16): 636-638. doi: 10.1049/ell2.12209
    [16] ZHAO C H, WANG J P, SU N, et al. Low contrast infrared target detection method based on residual thermal backbone network and weighting loss function[J]. Remote Sensing, 2022, 14(1): 177. doi: 10.3390/rs14010177
    [17] CHANG B R, TSAI H F, HSIEH C W, et al. Chip contour detection based on real-time image sensing and recognition[J]. Sensors and Materials, 2022, 34(3): 1077. doi: 10.18494/SAM3378
    [18] YANG B, ZHANG Y. Localization and tracking of closely-spaced human targets based on infrared sensors[J]. Infrared Physics & Technology, 2022, 123: 104176. doi: 10.1016/j.infrared.2022.104176
    [19] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[EB/OL]. (2016-02-04)[2022-12-01]. http://arxiv.org/abs/1506.02025.
    [20] YANG F, LI W, LIANG B B, et al. Multi-stage attention network for video-based person re-identification[J]. IET Computer Vision, 2022, 16(5): 445-455. doi: 10.1049/cvi2.12100
    [21] CUI Y M, JIANG L H, LIU S Y, et al. Fast and accurate obstacle detection of manipulator in complex human-machine interaction workspace[J]. Measurement Science and Technology, 2022, 33(8): 085402. doi: 10.1088/1361-6501/ac5f2a
    [22] PAIK C, KIM H J. Improving object detection, multi-object tracking, and re-identification for disaster response drones[EB/OL]. (2022-01-05)[2022-12-01]. http://arxiv.org/abs/2201.01494.
    [23] KUSHNIR D. Methods and means for small dynamic objects recognition and tracking[J]. Computers, Materials & Continua, 2022, 73(2): 3649-3665.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  158
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-29
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答