留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大面积有机太阳能电池在空间领域的应用探索

张建齐 田晨阳 魏志祥

张建齐,田晨阳,魏志祥. 大面积有机太阳能电池在空间领域的应用探索[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2605-2614 doi: 10.13700/j.bh.1001-5965.2022.0966
引用本文: 张建齐,田晨阳,魏志祥. 大面积有机太阳能电池在空间领域的应用探索[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2605-2614 doi: 10.13700/j.bh.1001-5965.2022.0966
ZHANG J Q,TIAN C Y,WEI Z X. Exploration of large-area organic solar cells in space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2605-2614 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0966
Citation: ZHANG J Q,TIAN C Y,WEI Z X. Exploration of large-area organic solar cells in space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2605-2614 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0966

大面积有机太阳能电池在空间领域的应用探索

doi: 10.13700/j.bh.1001-5965.2022.0966
基金项目: 

国家自然科学基金(22135001,52073068)

详细信息
    通讯作者:

    E-mail:weizx@nanoctr.cn

  • 中图分类号: TM914.4

Exploration of large-area organic solar cells in space applications

Funds: 

National Natural Science Foundation of China (22135001,52073068)

More Information
  • 摘要:

    有机太阳能电池(OSC)因低成本、轻质柔性及可印刷制备特性,被视为空间领域新型光伏器件的潜在选择,其小面积单结器件能量转换效率(PCE)已突破19%,比功率显著高于传统硅基及Ⅲ-Ⅴ族电池,且可折叠特性可节省运输空间,但大面积组件化面临能量转换效率损失、结构设计与长期工作稳定性等瓶颈。基于此,聚焦柔性有机太阳能电池在空间应用中的核心问题,系统分析溶液印刷技术在大面积制备中的工艺优化路径,总结面积放大导致的能量转换效率损失因素。同时,回顾有机太阳能电池在模拟超高真空、极端温差及辐射环境中的稳定性验证。结合当前研究进展,提出未来需通过分子结构优化、叠层设计及器件工艺改进,实现器件能量转换效率突破20%,并提高器件长期工作稳定性,为柔性有机太阳能电池在空间飞行器电力系统中的应用提供理论与技术参考。

     

  • 图 1  有机太阳能电池在空间应用中的优势及空间环境影响因素[7]

    Figure 1.  Advantages of organic solar cells in space applications and influencing factors in space environment[7]

    图 2  涂层溶液润湿干燥过程示意图[17-18]

    Figure 2.  Wetting and drying process of coating solution[17-18]

    图 3  刮刀涂布技术示意图[21, 23-24]

    Figure 3.  Blade coating process[21, 23-24]

    图 4  狭缝涂布技术示意图[26-28]

    Figure 4.  Slot-die coating process[26-28]

    图 5  喷墨印刷技术示意图[33-34]

    Figure 5.  Ink-jet printing process[33-34]

    图 6  有机太阳能电池组件串联结构电学损耗分析[24,40]

    Figure 6.  Analysis of electrical loss in series structure of organic solar cell modules[24,40]

    图 7  近空飞行气球实验示意图及实际实验过程[54]

    Figure 7.  Near-space high-altitude balloon experiment and photos of actual experimental process[54]

  • [1] PARK S, HEO S W, LEE W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521. doi: 10.1038/s41586-018-0536-x
    [2] LIU Y H, LIU B W, MA C Q, et al. Recent progress in organic solar cells (Part I. Material science)[J]. Science China Chemistry, 2022, 65(2): 224-268. doi: 10.1007/s11426-021-1180-6
    [3] ZHU L, ZHANG M, XU J Q, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21(6): 656-663. doi: 10.1038/s41563-022-01244-y
    [4] CHE X Z, LI Y X, QU Y, et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency[J]. Nature Energy, 2018, 3: 422-427.
    [5] FILIPIČ M, LÖPER P, NIESEN B, et al. CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations[J]. Optics Express, 2015, 23(7): A263-A278.
    [6] THIRSK R, KUIPERS A, MUKAI C, et al. The space-flight environment: the international space station and beyond[J]. Journal de L’Association Medicale Canadienne, 2009, 180(12): 1216-1220.
    [7] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545
    [8] MOHR N J, SCHERMER J J, HUIJBREGTS M A J, et al. Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules[J]. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 163-179. doi: 10.1002/pip.735
    [9] KALTENBRUNNER M, WHITE M S, GŁOWACKI E D, et al. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nature Communications, 2012, 3: 770. doi: 10.1038/ncomms1772
    [10] CARDINALETTI I, VANGERVEN T, NAGELS S, et al. Organic and perovskite solar cells for space applications[J]. Solar Energy Materials and Solar Cells, 2018, 182: 121-127. doi: 10.1016/j.solmat.2018.03.024
    [11] WANG Q, XIE Y, SOLTANI-KORDSHULI F, et al. Progress in emerging solution-processed thin film solar cells–Part I: Polymer solar cells[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 347-361. doi: 10.1016/j.rser.2015.11.063
    [12] NORRMAN K, GHANBARI-SIAHKALI A, LARSEN N B. Studies of spin-coated polymer films[J]. Annual Reports Section “C” (Physical Chemistry), 2005, 101(0): 174-201.
    [13] KUMAR P. Organic solar cells: device physics, processing, degradation, and prevention[M]. Boca Raton: CRC Press, 2016.
    [14] YANG F, HUANG Y T, LI Y W, et al. Large-area flexible organic solar cells[J]. NPJ Flexible Electronics, 2021, 5: 30. doi: 10.1038/s41528-021-00128-6
    [15] BLAKE T D. The physics of moving wetting lines[J]. Journal of Colloid and Interface Science, 2006, 299(1): 1-13. doi: 10.1016/j.jcis.2006.03.051
    [16] GU X D, SHAW L, GU K, et al. The meniscus-guided deposition of semiconducting polymers[J]. Nature Communications, 2018, 9: 534. doi: 10.1038/s41467-018-02833-9
    [17] LE BERRE M, CHEN Y, BAIGL D. From convective assembly to Landau-Levich deposition of multilayered phospholipid films of controlled thickness[J]. Langmuir, 2009, 25(5): 2554-2557. doi: 10.1021/la803646e
    [18] FAUSTINI M, LOUIS B, ALBOUY P A, et al. Preparation of Sol-Gel films by dip-coating in extreme conditions[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7637-7645. doi: 10.1021/jp9114755
    [19] LIAO C Y, CHEN Y, LEE C C, et al. Processing strategies for an organic photovoltaic module with over 10% efficiency[J]. Joule, 2020, 4(1): 189-206.
    [20] KANG H, JUNG S, JEONG S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics[J]. Nature Communications, 2015, 6: 6503.
    [21] KWON H C, JEONG W, LEE Y S, et al. Overcoming the low-surface-energy-induced wettability problem of flexible and transparent electrodes for large-area organic photovoltaic modules over 500 cm2[J]. Advanced Energy Materials, 2022, 12(21): 2200023. doi: 10.1002/aenm.202200023
    [22] HAN Y F, HU Z S, ZHA W S, et al. 12.42% monolithic 25.42 cm2 flexible organic solar cells enabled by an amorphous ITO-modified metal grid electrode[J]. Advanced Materials, 2022, 34(17): 2110276. doi: 10.1002/adma.202110276
    [23] WANG Y L, ZHU Q L, NAVEED H B, et al. Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells[J]. Advanced Energy Materials, 2020, 10(7): 1903609. doi: 10.1002/aenm.201903609
    [24] WANG G D, ADIL M A, ZHANG J Q, et al. Large-area organic solar cells: material requirements, modular designs, and printing methods[J]. Advanced Materials, 2019, 31(45): 1805089. doi: 10.1002/adma.201805089
    [25] XUE P Y, CHENG P, HAN R P S, et al. Printing fabrication of large-area non-fullerene organic solar cells[J]. Materials Horizons, 2022, 9(1): 194-219. doi: 10.1039/D1MH01317C
    [26] MENG X C, ZHANG L, XIE Y P, et al. A general approach for lab-to-manufacturing translation on flexible organic solar cells[J]. Advanced Materials, 2019, 31(41): 1903649. doi: 10.1002/adma.201903649
    [27] HAN Y W, JEON S J, LEE H S, et al. Evaporation-free nonfullerene flexible organic solar cell modules manufactured by an all-solution process[J]. Advanced Energy Materials, 2019, 9(42): 1902065. doi: 10.1002/aenm.201902065
    [28] WANG G D, ZHANG J Q, YANG C, et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices[J]. Advanced Materials, 2020, 32(49): 2005153. doi: 10.1002/adma.202005153
    [29] SHEN Y F, ZHANG H, ZHANG J Q, et al. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules[J]. Advanced Materials, 2023, 35(10): 2209030. doi: 10.1002/adma.202209030
    [30] WU Q, GUO J, SUN R, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting[J]. Nano Energy, 2019, 61: 559-566. doi: 10.1016/j.nanoen.2019.04.091
    [31] KREBS F C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 394-412. doi: 10.1016/j.solmat.2008.10.004
    [32] BURGUÉS-CEBALLOS I, STELLA M, LACHARMOISE P, et al. Towards industrialization of polymer solar cells: material processing for upscaling[J]. Journal of Materials Chemistry A, 2014, 2(42): 17711-17722. doi: 10.1039/C4TA03780D
    [33] CORZO D, BIHAR E, ALEXANDRE E B, et al. Ink engineering of transport layers for 9.5% efficient all-printed semitransparent nonfullerene solar cells[J]. Advanced Functional Materials, 2021, 31(7): 2005763. doi: 10.1002/adfm.202005763
    [34] CHEN X Z, HUANG R, HAN Y F, et al. Balancing the molecular aggregation and vertical phase separation in the polymer: nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet-printed active layer[J]. Advanced Energy Materials, 2022, 12(12): 2200044. doi: 10.1002/aenm.202200044
    [35] KOPOLA P, AERNOUTS T, SLIZ R, et al. Gravure printed flexible organic photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2011, 95(5): 1344-1347. doi: 10.1016/j.solmat.2010.12.020
    [36] GALAGAN Y, RUBINGH J J M, ANDRIESSEN R, et al. ITO-free flexible organic solar cells with printed current collecting grids[J]. Solar Energy Materials and Solar Cells, 2011, 95(5): 1339-1343. doi: 10.1016/j.solmat.2010.08.011
    [37] KOPOLA P, AERNOUTS T, GUILLEREZ S, et al. High efficient plastic solar cells fabricated with a high-throughput gravure printing method[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1673-1680. doi: 10.1016/j.solmat.2010.05.027
    [38] KOIDIS C, LOGOTHETIDIS S, KASSAVETIS S, et al. Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT: PCBM thin films for organic photovoltaics[J]. Solar Energy Materials and Solar Cells, 2013, 112: 36-46. doi: 10.1016/j.solmat.2012.12.044
    [39] KAPNOPOULOS C, MEKERIDIS E D, TZOUNIS L, et al. Fully gravure printed organic photovoltaic modules: a straightforward process with a high potential for large scale production[J]. Solar Energy Materials and Solar Cells, 2016, 144: 724-731. doi: 10.1016/j.solmat.2015.10.021
    [40] LUCERA L, KUBIS P, FECHER F W, et al. Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules[J]. Energy Technology, 2015, 3(4): 373-384. doi: 10.1002/ente.201402192
    [41] HEO Y J, JUNG Y S, HWANG K, et al. Small-molecule organic photovoltaic modules fabricated via halogen-free solvent system with roll-to-roll compatible scalable printing method[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39519-39525.
    [42] STROHM S, MACHUI F, LANGNER S, et al. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods[J]. Energy & Environmental Science, 2018, 11(8): 2225-2234.
    [43] CHANG K, LI Y X, DU G X, et al. Efficient non-fullerene organic photovoltaics printed by electrospray via solvent engineering[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27405-27415.
    [44] ZHANG L, LIN B J, HU B, et al. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability[J]. Advanced Materials, 2018, 30(22): 1800343. doi: 10.1002/adma.201800343
    [45] GUO S, BRANDT C, ANDREEV T, et al. First step into space: performance and morphological evolution of P3HT: PCBM bulk heterojunction solar cells under AM0 illumination[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17902-17910.
    [46] KREBS F C, NORRMAN K. Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing[J]. Progress in Photovoltaics: Research and Applications, 2007, 15(8): 697-712. doi: 10.1002/pip.794
    [47] CLASSEN A, HEUMUELLER T, WABRA I, et al. Revealing hidden UV instabilities in organic solar cells by correlating device and material stability[J]. Advanced Energy Materials, 2019, 9(39): 1902124. doi: 10.1002/aenm.201902124
    [48] RYU M S, CHA H J, JANG J. Improvement of operation lifetime for conjugated polymer: fullerene organic solar cells by introducing a UV absorbing film[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 152-156. doi: 10.1016/j.solmat.2009.08.011
    [49] KIMURA H, FUKUDA K, JINNO H, et al. High operation stability of ultraflexible organic solar cells with ultraviolet-filtering substrates[J]. Advanced Materials, 2019, 31(19): 1808033. doi: 10.1002/adma.201808033
    [50] PATERNÒ G M, ROBBIANO V, FRASER K J, et al. Neutron radiation tolerance of two benchmark thiophene-based conjugated polymers: the importance of crystallinity for organic avionics[J]. Scientific Reports, 2017, 7: 41013. doi: 10.1038/srep41013
    [51] MARTYNOV I V, AKKURATOV A V, LUCHKIN S Y, et al. Impressive radiation stability of organic solar cells based on fullerene derivatives and carbazole-containing conjugated polymers[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21741-21748.
    [52] YANG W Y, LUO Z H, SUN R, et al. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive[J]. Nature Communications, 2020, 11: 1218. doi: 10.1038/s41467-020-14926-5
    [53] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 974221.
    [54] WANG H, JIANG X, CAO Y X, et al. The first record of diurnal performance evolution of perovskite solar cells in near space[J]. Advanced Energy Materials, 2023, 13(2): 2202643. doi: 10.1002/aenm.202202643
    [55] REB L K, BÖHMER M, PREDESCHLY B, et al. Perovskite and organic solar cells on a rocket flight[J]. Joule, 2020, 4(9): 1880-1892. doi: 10.1016/j.joule.2020.07.004
    [56] BAILEY S, RAFFAELLE R. Space solar cells and arrays[M]//LUQUE A, HEGEDUS S. Handbook of photovoltaic science and engineering. New York: Wiley, 2011: 369-373.
    [57] O’NEILL M, HOWELL J, FIKES J, et al. Stretched lens array SquareRigger (SLASR): a new space array for high-power missions[C]//Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conference. Piscataway: IEEE Press, 2006: 2006-2009.
  • 加载中
图(7)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  160
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-06
  • 录用日期:  2023-03-07
  • 网络出版日期:  2023-03-29
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答