留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器再入滑翔段在线制导

魏昊 蔡光斌 凡永华 徐慧 王晶 周卓成

魏昊,蔡光斌,凡永华,等. 高超声速飞行器再入滑翔段在线制导[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):183-192 doi: 10.13700/j.bh.1001-5965.2022.0965
引用本文: 魏昊,蔡光斌,凡永华,等. 高超声速飞行器再入滑翔段在线制导[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):183-192 doi: 10.13700/j.bh.1001-5965.2022.0965
WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0965
Citation: WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0965

高超声速飞行器再入滑翔段在线制导

doi: 10.13700/j.bh.1001-5965.2022.0965
基金项目: 

国家自然科学基金(61773387) 

详细信息
    通讯作者:

    E-mail:cgb0712@163.com

  • 中图分类号: V448.235

Online guidance for hypersonic vehicles in glide-reentry segment

Funds: 

National Natural Science Foundation of China (61773387) 

More Information
  • 摘要:

    针对高超声速飞行器再入滑翔段制导问题,提出一种基于粒子群优化-鲸鱼算法的在线制导策略。考虑其约束模型与交班条件,建立了过程约束与终端约束模型。为缩短轨迹生成时间,减少算法计算量,设计了一种能自动满足终端高度、路径角、航程约束的高度-剩余航程飞行剖面。基于阻力系数为常值的前提下,推导了满足航程约束的速度数值解。利用上述模型,设计了一种三参数寻优模型,实现对终端条件的控制。为优化过程约束,提出结合鲸鱼算法和粒子群优化算法的改进鲸鱼算法,克服了粒子群算法易早熟收敛的缺点,提高了求解效率,满足了飞行过程中热流率最小的目标。而后通过将航迹分段的方法,提出一种基于中间点的在线制导方法,对纵向剖面进行在线更新,从而满足终端约束。仿真结果表明,所提方法能高效率的求解最优飞行轨迹。

     

  • 图 1  改进WOA流程

    Figure 1.  Flow of improved WOA

    图 2  在线制导算法的流程

    Figure 2.  Flow of online guidance algorithm

    图 3  速度-时间曲线

    Figure 3.  Velocity-time curve

    图 4  高度-剩余航程曲线

    Figure 4.  Height-remaining range curve

    图 5  倾侧角-时间曲线

    Figure 5.  Angle of heel-time curve

    图 6  航迹角-时间曲线

    Figure 6.  Path angle-time curve

    图 7  热流率-时间曲线

    Figure 7.  Heat flow rate-time curve

    图 8  航向角-时间曲线

    Figure 8.  Course angle-time curve

    图 9  二维航迹图

    Figure 9.  Two-dimensional trajectory map

    图 10  三维航迹图

    Figure 10.  Three-dimensional trajectory map

    图 11  3种智能算法的热流率时间曲线

    Figure 11.  Heat flow rate-time curves of three intelligent algorithms

    表  1  仿真初始条件

    Table  1.   Initial conditions of simulation

    任务 初始位置/(°) 高度/km 速度/(m·s−1) 路径角/(°)
    1 (E 90, N 50) 60|30 5500|1100 −1|−1
    2 (E 90, N 50) 55|30 5250|950 0|−1
    3 (E 90, N 45) 50|30 5000|800 −1|0
    4 (E 90, N 45) 45|30 4750|650 0|0
    下载: 导出CSV

    表  2  仿真结果

    Table  2.   Simulation result

    任务 $ \left| {\Delta V} \right|/({\text{m}} \cdot {\text{s}}^{-1}) $ $\left| {\Delta \gamma } \right|$/(°) $\left| {\Delta h} \right|/{\text{km}}$ $ \left| {\Delta {R_{\mathrm{L}}}} \right| / {\text{km}} $
    1 4.17 3.62×10−5 4.70×10−2 2.69
    2 21.92 2.07×10−6 3.40×10−2 1.94
    3 29.64 6.58×10−5 1.11×10−2 1.39
    4 17.20 2.64×10−5 1.83×10−3 0.89
    下载: 导出CSV

    表  3  终端约束相对误差

    Table  3.   Relative error of terminal constraint

    任务 相对误差/%
    $\Delta V$ $\Delta \gamma $ $\Delta h $ $\Delta {R_{\mathrm{L}}} $
    1 0.38 0.0036 0.16 0.120
    2 2.31 0.00021 0.11 0.086
    3 3.71 0.0066 0.037 0.066
    4 2.64 0.0026 0.0061 0.042
    下载: 导出CSV

    表  4  3种智能算法的仿真结果

    Table  4.   Simulation results of three intelligent algorithms

    算法 $ \left| {\Delta V} \right| / ({\text{m}} \cdot {\text{s}}^{-1}) $ $\left| {\Delta \gamma } \right| $/(°) $\left| {\Delta h} \right| /{\text{km}} $ $ \left| {\Delta {R_{\mathrm{L}}}} \right| /{\text{km}} $
    PSO-WOA 16.28 1.48×10−6 1.21×10−3 0.56
    WOA 35.43 1.66×10−6 2.36×10−2 0.98
    PSO 11.41 1.17×10−5 2.15×10−2 1.23
    下载: 导出CSV
  • [1] 李帆, 张云飞, 李航宇, 等. 2021年世界防空反导综述及对我国发展的启示[J]. 战术导弹技术, 2022(3): 34-39.

    LI F, ZHANG Y F, LI H Y, et al. Review of world air and missile defense in 2021 and the enlightenment to China’s development[J]. Tactical Missile Technology, 2022(3): 34-39(in Chinese).
    [2] 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020(6): 81-86.

    ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology, 2020(6): 81-86(in Chinese).
    [3] 陈冰, 郑勇, 章后甜, 等. 临近空间高超声速飞行器导航技术发展综述[J]. 飞航导弹, 2021(12): 57-62.

    CHEN B, ZHENG Y, ZHANG H T, et al. Overview of the development of navigation technology for hypersonic vehicles in near space[J]. Aerodynamic Missile Journal, 2021(12): 57-62(in Chinese).
    [4] 吴了泥. 可重复使用运载器亚轨道再入段制导与控制技术研究[D]. 南京: 南京麻豆精品秘 国产传媒, 2009.

    WU L N. Research on guidance and control technology of sub-orbital reentry phase of reusable launch vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [5] ELNAGAR G N, KAZEMI M A. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems[J]. Computational Optimization and Applications, 1998, 11(2): 195-217. doi: 10.1023/A:1018694111831
    [6] 呼卫军, 周军, 常晶, 等. RLV应急再入轨迹规划问题的动态伪谱法求解[J]. 宇航学报, 2015, 36(11): 1255-1261.

    HU W J, ZHOU J, CHANG J, et al. Emergency reentry trajectory planning for reusable launch vehicle based on dynamic Gauss pseudo-spectral[J]. Journal of Astronautics, 2015, 36(11): 1255-1261(in Chinese).
    [7] WANG T, ZHANG H B, ZENG L, et al. A robust predictor-corrector entry guidance[J]. Aerospace Science and Technology, 2017, 66: 103-111. doi: 10.1016/j.ast.2017.03.010
    [8] 刘欣, 李建林, 葛健全, 等. 滑翔式飞行器再入弹道设计[J]. 弹箭与制导学报, 2011, 31(6): 161-164.

    LIU X, LI J L, GE J Q, et al. Reentry trajectory design for glide-reentry vehicle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(6): 161-164(in Chinese).
    [9] 伍元培, 王阳, 赵爱红, 等. 基于深度学习网络的高超声速飞行器避障轨迹规划方法[J]. 战术导弹技术, 2022(1): 53-59.

    WU Y P, WANG Y, ZHAO A H, et al. Obstacle avoidance trajectory planning of hypersonic vehicle based on deep learning network[J]. Tactical Missile Technology, 2022(1): 53-59(in Chinese).
    [10] 冯林爽, 刘磊, 王永骥. 基于PSO和SQP混合优化算法的高超声速飞行器轨迹优化[C]//第27届中国控制与决策会议论文集. 北京: 北京麻豆精品秘 国产传媒出版社, 2015: 1527-1531.

    FENG L S, LIU L, WANG Y J. Hypersonic vehicle trajectory optimization based on PSO and SQP hybrid optimization algorithm [C]//Proceedings of the 27th China Control and Decision Making Conference. Beijing: Beihang University Press, 2015: 1527-1531(in Chinese).
    [11] 高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022(3): 21-30.

    GAO Y L, YANG Q W, WANG X F, et al. Overview of new swarm intelligence optimization algorithms[J]. Journal of Zhengzhou University (Engineering Edition), 2022(3): 21-30(in Chinese).
    [12] 黄清宝, 李俊兴, 宋春宁, 等. 基于余弦控制因子和多项式变异的鲸鱼优化算法[J]. 控制与决策, 2020, 35(3): 559-568.

    HUANG Q B, LI J X, SONG C N, et al. Whale optimization algorithm based on cosine control factor and polynomial mutation[J]. Control and Decision, 2020, 35(3): 559-568(in Chinese).
    [13] SAAFAN M M, EL-GENDY E M. IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems[J]. Expert Systems with Applications, 2021, 176: 114901. doi: 10.1016/j.eswa.2021.114901
    [14] ABD ELAZIZ M, LU S F, HE S B. A multi-leader whale optimization algorithm for global optimization and image segmentation[J]. Expert Systems with Applications, 2021, 175: 114841. doi: 10.1016/j.eswa.2021.114841
    [15] AGRAWAL R K, KAUR B, SHARMA S. Quantum based whale optimization algorithm for wrapper feature selection[J]. Applied Soft Computing, 2020, 89: 106092. doi: 10.1016/j.asoc.2020.106092
    [16] ZHOU H Y, WANG X G, CUI N G. A novel reentry trajectory generation method using improved particle swarm optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3212-3223. doi: 10.1109/TVT.2019.2899917
    [17] LI Z H, HU C, DING C B, et al. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018, 76: 176-186. doi: 10.1016/j.ast.2018.01.033
    [18] 徐慧, 蔡光斌, 穆朝絮, 等. 高超声速滑翔飞行器全程总红外辐射最小的轨迹优化(特邀)[J]. 红外与激光工程, 2022, 51(4): 3788.

    XU H, CAI G B, MU Z X, et al. Trajectory optimization of hypersonic glide vehicle with minimum total infrared radiation (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 3788(in Chinese).
    [19] 周宏宇, 王小刚, 赵亚丽, 等. 空天飞行器返回滑翔段在线制导方法[J]. 宇航学报, 2021, 42(2): 175-184.

    ZHOU H Y, WANG X G, ZHAO Y L, et al. Online guidance for aerospace vehicle in return-gliding phase[J]. Journal of Astronautics, 2021, 42(2): 175-184(in Chinese).
    [20] ZHANG W Q, CHEN W C, YU W B. Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile[J]. ISA Transactions, 2018, 83: 176-188. doi: 10.1016/j.isatra.2018.08.012
    [21] 周宏宇. 组合动力可重复使用运载器三维轨迹优化与在线制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHOU H Y. Research on 3D trajectory optimization and online guidance method of combined power reusable launch vehicle[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [22] HAMEED A S, BINDU G R. Single segment approach and landing guidance and control for an unpowered reusable launch vehicle[J]. Aerospace Science and Technology, 2021, 115: 106777. doi: 10.1016/j.ast.2021.106777
    [23] 徐慧, 蔡光斌, 张胜修. 高超声速滑翔飞行器再入气动系数改进拟合模型[J]. 宇航学报, 2021, 42(9): 1139-1149.

    XU H, CAI G B, ZHANG S X. Modified aerodynamic coefficient fitting models of hypersonic gliding vehicle in reentry phase[J]. Journal of Astronautics, 2021, 42(9): 1139-1149(in Chinese).
    [24] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  305
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-05-06
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答