留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度注意力机制的RAW图像重建

张科 刘昱 胡凯

张科,刘昱,胡凯. 基于多尺度注意力机制的RAW图像重建[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):257-264 doi: 10.13700/j.bh.1001-5965.2022.0959
引用本文: 张科,刘昱,胡凯. 基于多尺度注意力机制的RAW图像重建[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):257-264 doi: 10.13700/j.bh.1001-5965.2022.0959
ZHANG K,LIU Y,HU K. RAW image reconstruction based on multi-scale attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):257-264 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0959
Citation: ZHANG K,LIU Y,HU K. RAW image reconstruction based on multi-scale attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):257-264 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0959

基于多尺度注意力机制的RAW图像重建

doi: 10.13700/j.bh.1001-5965.2022.0959
基金项目: 

国家自然科学基金(61771338);天津市科技计划重点项目(18ZXRHSY00190) 

详细信息
    通讯作者:

    E-mail:liuyu@tju.edu.cn

  • 中图分类号: TN911.73

RAW image reconstruction based on multi-scale attention mechanism

Funds: 

National Natural Science Foundation of China (61771338); Key Project of Tianjin Science and Technology item (18ZXRHSY00190) 

More Information
  • 摘要:

    针对传统图像信号处理(ISP)算法繁琐的问题,基于可取代ISP算法的PyNET网络模型,提出一种端到端的RAW图像重建方法Py-CBAM。通过引入高效的注意力机制,并利用该机制对原有网络的多层级多尺度结构进行重设计,实现不同尺度特征的自适应加权,以较大程度提升图像重建的性能。实验结果表明,所提方法在公开的ZRR数据集上获得的峰值信噪比(PSNR)与PyNET方法相比提升了0.37 dB,结构相似度(SSIM)提升了0.001 8。将ZRR数据集和新构建的NRR数据集联合对Py-CBAM重新训练后,PSNR和SSIM分别达到25.73 dB和0.965 4。视觉效果上,所提方法解决了RAW图像重建时的噪声高与色彩失真、畸变等问题,增强模型在多场景不同光照环境条件下的重建能力;重建结果较为真实,视觉质量最优,在图像过曝和过暗区域视觉提升效果较为明显。

     

  • 图 1  可视化RAW文件与重建图像

    Figure 1.  Visualized RAW data and reconstructed image

    图 2  卷积块注意力模块

    Figure 2.  Convolutional block attention module

    图 3  多卷积块注意力模块

    Figure 3.  Multi-convolution block attention module

    图 4  本文所提的Py-CBAM模型结构

    Figure 4.  Py-CBAM model structure mentioned in this article

    图 5  消融实验视觉效果对比

    Figure 5.  Visual effect comparison of ablation experiment

    图 6  夜晚环境下的实验结果对比

    Figure 6.  Comparison of experimental results in night environment

    表  1  消融实验结果对比

    Table  1.   Comparison of ablation experiment results

    模型 通道注意力 空间注意力 PSNR/dB SSIM
    PyNET 20.77 0.8601
    Py-CA 20.89 0.8597
    Py-SA 20.97 0.8610
    Py-CBAM 21.14 0.8619
    下载: 导出CSV

    表  2  亮度方差对比实验结果

    Table  2.   Comparison experiments result of brightness variance

    模型方差
    PyNET1 108.6
    Py-CA1 042.0
    Py-SA1 022.2
    Py-CBAM994.3
    下载: 导出CSV

    表  3  NRR数据集测试结果对比

    Table  3.   Comparison of test results on NRR dataset

    模型 PSNR/dB SSIM
    PyNET 13.67 0.5537
    PyNET(夜晚) 20.22 0.7059
    Py-CBAM 20.54 0.7158
    Py-CBAM(夜晚) 25.73 0.9654
    下载: 导出CSV
  • [1] SCHWARTZ E, GIRYES R, BRONSTEIN A M. DeepISP: Toward learning an end-to-end image processing pipeline[J]. IEEE Transactions on Image Processing, 2019, 28(2): 912-923. doi: 10.1109/TIP.2018.2872858
    [2] LIANG Z T, CAI J R, CAO Z S, et al. CameraNet: A two-stage framework for effective camera ISP learning[J]. IEEE Transactions on Image Processing, 2021, 30: 2248-2262. doi: 10.1109/TIP.2021.3051486
    [3] IGNATOV A, VAN GOOL L, TIMOFTE R. Replacing mobile camera ISP with a single deep learning model[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2020: 2275-2285.
    [4] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[EB/OL]. (2018-07-17)[2022-11-25]. http://doi.org/10.48550/arXiv.1807.06521.
    [5] HEIDE F, STEINBERGER M, TSAI Y T, et al. FlexISP: A flexible camera image processing framework[J]. ACM Transactions on Graphics, 2014, 33(6): 231.
    [6] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 5718-5729.
    [7] LI X, GUNTURK B, ZHANG L. Image demosaicing: A systematic survey[C]//Proceedings of the Visual Communications and Image Processing. San Diego: SPIE, 2008: 6822-6837.
    [8] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005: 60-65.
    [9] KWOK N M, SHI H Y, HA Q P, et al. Simultaneous image color correction and enhancement using particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2356-2371. doi: 10.1016/j.engappai.2013.07.023
    [10] GIJSENIJ A, GEVERS T, VAN DE WEIJER J. Improving color constancy by photometric edge weighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 918-929. doi: 10.1109/TPAMI.2011.197
    [11] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1874-1883.
    [12] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2017: 1132-1140.
    [13] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 5835-5843.
    [14] LEE J Y, SUNKAVALLI K, LIN Z, et al. Automatic content-aware color and tone stylization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 2470-2478.
    [15] FU X Y, ZENG D L, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96. doi: 10.1016/j.sigpro.2016.05.031
    [16] GUO C L, YAN Q X, ANWAR S, et al. Image dehazing Transformer with transmission-aware 3D position embedding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 5802-5810.
    [17] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: Real image restoration via improved data synthesis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2693-2702.
    [18] UHM K H, KIM S W, JI S W, et al. W-Net: Two-stage U-Net with misaligned data for raw-to-RGB mapping[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE Press, 2019: 3636-3642.
    [19] ZHANG Z L, WANG H L, LIU M, et al. Learning RAW-to-sRGB mappings with inaccurately aligned supervision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 4328-4338.
    [20] MORAWSKI I, CHEN Y, LIN Y S, et al. GenISP: Neural ISP for low-light machine cognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2022: 629-638.
    [21] HSYU M C, LIU C W, CHEN C H, et al. CSANet: High speed channel spatial attention network for mobile ISP[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2021: 2486-2493.
    [22] DAI L H, LIU X H, LI C Q, et al. AWNet: Attentive wavelet network for image ISP[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 185-201.
    [23] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6450-6458.
    [24] VEDALDI A, FULKERSON B. VLFeat: An open and portable library of computer vision algorithms[C]//Proceedings of the 18th ACM international conference on Multimedia. New York: ACM, 2010: 1469-1472.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  130
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-05-05
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答