留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹射救生过程飞行员胸腰椎高负荷损伤分析

裴卉宁 陈允峰 白仲航 孙佳俐 吴梦 邵星辰

裴卉宁,陈允峰,白仲航,等. 弹射救生过程飞行员胸腰椎高负荷损伤分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):102-112 doi: 10.13700/j.bh.1001-5965.2022.0957
引用本文: 裴卉宁,陈允峰,白仲航,等. 弹射救生过程飞行员胸腰椎高负荷损伤分析[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):102-112 doi: 10.13700/j.bh.1001-5965.2022.0957
PEI H N,CHEN Y F,BAI Z H,et al. Analysis of high load injury of thoracolumbar spine in pilots during ejection process[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):102-112 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0957
Citation: PEI H N,CHEN Y F,BAI Z H,et al. Analysis of high load injury of thoracolumbar spine in pilots during ejection process[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):102-112 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0957

弹射救生过程飞行员胸腰椎高负荷损伤分析

doi: 10.13700/j.bh.1001-5965.2022.0957
基金项目: 

国家自然科学基金(52242508);河北省自然科学基金(G2021202008) 

详细信息
    通讯作者:

    E-mail:baizhonghang@hebut.edu.cn

  • 中图分类号: TP391.9

Analysis of high load injury of thoracolumbar spine in pilots during ejection process

Funds: 

National Natural Science Foundation of China (52242508); Natural Science Foundation of Hebei Province (G2021202008) 

More Information
  • 摘要:

    针对战斗机飞行员在弹射过程中高负荷引起的胸腰段损伤率较高,且根据临床CT数据建立的有限元模型存在无法反映细微几何特征和骨骼非匀质属性,造成高负荷力学分析不准确等问题。采用非线性有限元方法建立表达特定对象皮质骨、松质骨厚度与密度的胸腰段(T12~L2)有限元模型,对弹射过程中战斗机飞行员胸腰段进行生物力学分析。基于胸腰段CT数据,将皮质骨测量(CBM)得到的皮质骨厚度和密度值纳入基于CT的胸腰段有限元建模过程中,并根据Hounsfield单位(HU)值计算各元素的弹性模量实现材质非均匀赋值,完成特定对象有限元模型的构建。通过添加边界条件和载荷对模型进行有效性验证,并模拟计算直立、前屈、后仰3种生理运动条件下弹射胸腰段脊柱的生物力学响应。结果表明:3种不同生理运动条件下弹射过程中椎骨对负荷的传递特性显著不同,直立生理运动条件下弹射,高负荷产生的椎骨直接急性损伤最小。

     

  • 图 1  皮质骨厚度测量与有限元模型构建流程

    Figure 1.  Flow of cortical bone mapping and finite element model construction

    图 2  空气、脂肪、肌肉ROIs区域

    Figure 2.  ROIs contain air, fat, and muscle

    图 3  空气、脂肪、肌肉ROIs区域HU值频数分布

    Figure 3.  Frequency histogram of HU of air, fat and muscle within the ROIs

    图 4  T12~L2有限元模型和验证边界载荷条件

    Figure 4.  T12~L2 finite element modeling and verification of boundary load conditions

    图 5  T12~L1轴向压力-位移曲线

    Figure 5.  Force-displacement curves of T12~L1 segment

    图 6  本文模型关节活动范围验证结果

    Figure 6.  The proposed model joint range of motion validation results

    图 7  加速度响应走廊与响应曲线

    Figure 7.  Acceleration response corridor and response curves

    图 8  弹射座椅/人椅系统简化结构与受力分析

    Figure 8.  Seat/occupant system simplified structure and force analysis

    图 9  弹射筒加速度-时间曲线

    Figure 9.  Ejection cartridge acceleration-time curve

    图 10  皮质骨应力云图

    Figure 10.  Stress nephogram of cortical bone

    图 11  L2松质骨应力云图

    Figure 11.  Stress nephogram of L2 cancellous bone

    图 12  椎间盘应力云图

    Figure 12.  Stress nephogram of intervertebral disc

    图 13  椎间盘内压云图

    Figure 13.  Pressure nephogram of intervertebral disc

    表  1  椎间盘髓核、纤维环基质及关节软骨材料属性

    Table  1.   Nucleus pulposus, annulus fibrosus matrix and articular cartilage material properties of intervertebral discs

    材质种类 应变率 ${C_{10}}/{\text{MPa}}$ ${C_{01}}/{\mathrm{MPa}}$ 密度/(g·cm−3) 泊松比 杨氏模量/MPa
    髓核 31.8 8.0 1 0.495
    0.12 0.03 1 0.495
    纤维环基质 11.8 2.9 1.2 0.45
    0.18 0.045 1.2 0.45
    关节软骨 1 0.4 10.4
    肌肉等效体 1 650 3 350 1.1 0.492
    下部骨骼等效体 1.1 0.3 10 000
    下载: 导出CSV
  • [1] 原芳, 薛清华, 刘伟强. 有限元法在脊柱生物力学应用中的新进展[J]. 医用生物力学, 2013, 28(5): 585-590.

    YUAN F, XUE Q H, LIU W Q. Recent advances about finite element applications in spine biomechanics[J]. Journal of Medical Biomechanics, 2013, 28(5): 585-590(in Chinese).
    [2] EPSTEIN D, MARKOVITZ E, NAKDIMON I, et al. Injuries associated with the use of ejection seats: A systematic review, meta-analysis and the experience of the israeli air force, 1990—2019[J]. Injury, 2020, 51(7): 1489-1496. doi: 10.1016/j.injury.2020.04.048
    [3] MANEN O, CLÉMENT J, BISCONTE S, et al. Spine injuries related to high-performance aircraft ejections: A 9-year retrospective study[J]. Aviation, Space, and Environmental Medicine, 2014, 85(1): 66-70. doi: 10.3357/ASEM.3639.2014
    [4] SRIDHAR M S, JOSHI V V, PUNYASHLOK BISWAL. Analysis of ejection injury of spine in aviators[J]. International Journal of Scientific Research, 2019, 8(1): 40-43.
    [5] DREISCHARF M, ZANDER T, SHIRAZI-ADL A, et al. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together[J]. Journal of Biomechanics, 2014, 47(8): 1757-1766. doi: 10.1016/j.jbiomech.2014.04.002
    [6] REZAEI A, TILTON M, LI Y, et al. Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates[J]. Computers in Biology and Medicine, 2021, 137: 104833. doi: 10.1016/j.compbiomed.2021.104833
    [7] KE S, HE X W, YANG M, et al. The biomechanical influence of facet joint parameters on corresponding segment in the lumbar spine: A new visualization method[J]. The Spine Journal: Official Journal of the North American Spine Society, 2021, 21(12): 2112-2121. doi: 10.1016/j.spinee.2021.05.024
    [8] 秦计生, 王昱, 彭雄奇, 等. 全腰椎三维有限元模型的建立及其有效性验证[J]. 医用生物力学, 2013, 28(3): 321-325.

    QIN J S, WANG Y, PENG X Q, et al. Three-dimensional finite element modeling of whole lumbar spine and its biomechanical analysis[J]. Journal of Medical Biomechanics, 2013, 28(3): 321-325(in Chinese).
    [9] 包佳仪, 王兴伟, 周前祥, 等. 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(3): 499-507.

    BAO J Y, WANG X W, ZHOU Q X, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 499-507(in Chinese).
    [10] 陈吉清, 吴凯, 兰凤崇, 等. 中国成年男性全颈椎生物力学建模与验证[J]. 汽车工程, 2016, 38(11): 1305-1311.

    CHEN J Q, WU K, LAN F C, et al. Biomechanics modeling and validation for all cervical vertebrae of Chinese adult male[J]. Automotive Engineering, 2016, 38(11): 1305-1311(in Chinese).
    [11] 唐亮, 郑佳佳, 李文熙, 等. 人体腰椎生物力学模型及损伤参数敏感性分析[J]. 华南理工大学学报, 2020, 48(9): 94-105.

    TANG L, ZHENG J J, LI W X, et al. Biomechanical model of human lumbar spine and sensitivity analysis of injury parameters[J]. Journal of South China University of Technology, 2020, 48(9): 94-105(in Chinese).
    [12] TREECE G M, GEE A H. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT[J]. Medical Image Analysis, 2015, 20(1): 249-264. doi: 10.1016/j.media.2014.11.012
    [13] SCHILEO E, PITOCCHI J, FALCINELLI C, et al. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur[J]. Bone, 2020, 136: 115348. doi: 10.1016/j.bone.2020.115348
    [14] KEYAK J H, KANEKO T S, TEHRANZADEH J, et al. Predicting proximal femoral strength using structural engineering models[J]. Clinical Orthopaedics and Related Research, 2005(8): 219-228.
    [15] SCHILEO E, DALL’ARA E, TADDEI F, et al. An accurate estimation of bone density improves the accuracy of subject-specific finite element models[J]. Journal of Biomechanics, 2008, 41(11): 2483-2491. doi: 10.1016/j.jbiomech.2008.05.017
    [16] MORGAN E F, BAYRAKTAR H H, KEAVENY T M. Trabecular bone modulus-density relationships depend on anatomic site[J]. Journal of Biomechanics, 2003, 36(7): 897-904. doi: 10.1016/S0021-9290(03)00071-X
    [17] ÖHMAN C, BALEANI M, PANI C, et al. Compressive behaviour of child and adult cortical bone[J]. Bone, 2011, 49(4): 769-776. doi: 10.1016/j.bone.2011.06.035
    [18] EGGERMONT F, VERDONSCHOT N, VAN DER LINDEN Y, et al. Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models[J]. PLoS One, 2019, 14(7): e0220564. doi: 10.1371/journal.pone.0220564
    [19] LEE D C, HOFFMANN P F, KOPPERDAHL D L, et al. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision[J]. Bone, 2017, 103: 325-333. doi: 10.1016/j.bone.2017.07.029
    [20] SHARMA M, LANGRANA N A, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability[J]. Spine, 1995, 20(8): 887-900. doi: 10.1097/00007632-199504150-00003
    [21] WAGNAC E, ARNOUX P J, GARO A, et al. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads[J]. Journal of Biomechanical Engineering, 2011, 133(10): 101007. doi: 10.1115/1.4005224
    [22] SCHMIDT H, HEUER F, SIMON U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus[J]. Clinical Biomechanics, 2006, 21(4): 337-344. doi: 10.1016/j.clinbiomech.2005.12.001
    [23] CHEUNG J T M, ZHANG M, CHOW D H K. Biomechanical responses of the intervertebral joints to static and vibrational loading: A finite element study[J]. Clinical Biomechanics, 2003, 18(9): 790-799. doi: 10.1016/S0268-0033(03)00142-6
    [24] MENGONI M. Biomechanical modelling of the facet joints: A review of methods and validation processes in finite element analysis[J]. Biomechanics and Modeling in Mechanobiology, 2021, 20(2): 389-401. doi: 10.1007/s10237-020-01403-7
    [25] EL-RICH M, ARNOUX P J, WAGNAC E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions[J]. Journal of Biomechanics, 2009, 42(9): 1252-1262. doi: 10.1016/j.jbiomech.2009.03.036
    [26] PANJABI M M, OXLAND T R, YAMAMOTO I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves[J]. The Journal of Bone and Joint Surgery American Volume, 1994, 76(3): 413-424.
    [27] PARK W M, KIM K, KIM Y H. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine[J]. Computers in Biology and Medicine, 2013, 43(9): 1234-1240. doi: 10.1016/j.compbiomed.2013.06.011
    [28] MARKOLF K L. Deformation of the thoracolumbar intervertebral joints in response to external loads: A biomechanical study using autopsy material[J]. The Journal of Bone and Joint Surgery American Volume, 1972, 54(3): 511-533.
    [29] QIU T X, TAN K W, LEE V S, et al. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method[J]. Medical Engineering & Physics, 2006, 28(7): 656-664.
    [30] OXLAND T R, LIN R M, PANJABI M M. Three-Dimensional mechanical properties of the thoracolumbar junction[J]. Journal of Orthopaedic Research, 1992, 10(4): 573-580. doi: 10.1002/jor.1100100412
    [31] IVANCIC P C. Biomechanics of thoracolumbar burst and chance-type fractures during fall from height[J]. Global Spine Journal, 2014, 4(3): 161-168. doi: 10.1055/s-0034-1381729
    [32] NUSHOLTZ G S, AOUN Z, DI DOMENICO L, et al. Statistical considerations for evaluating biofidelity, repeatability, and reproducibility of ATDs[J]. SAE International Journal of Transportation Safety, 2013, 1(1): 200-218. doi: 10.4271/2013-01-1249
    [33] KUMAR V, MISHRA R K, KRISHNAPILLAI S. Study of pilot’s comfortness in the cockpit seat of a flight simulator[J]. International Journal of Industrial Ergonomics, 2019, 71: 1-7. doi: 10.1016/j.ergon.2019.02.004
    [34] 王一丁, 童明波, 闫家益, 等. 某型飞机弹射座椅穿盖弹射试验与数值模拟[J]. 南京麻豆精品秘 国产传媒学报, 2013, 45(3): 336-340.

    WANG Y D, TONG M B, YAN J Y, et al. Test and numerical simulation of through canopy ejection for aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3): 336-340(in Chinese).
    [35] 李武杰, 郭立新. 不同姿势对脊椎胸腰节段爆裂骨折的影响[J]. 东北大学学报(自然科学版), 2020, 41(4): 534-540.

    LI W J, GUO L X. Effect of different postures on burst fracture of thoracolumbar segment[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 534-540(in Chinese).
    [36] PANJABI M M, KIFUNE M, WEN L, et al. Dynamic canal encroachment during thoracolumbar burst fractures[J]. Journal of Spinal Disorders, 1995, 8(1): 39-48.
    [37] ZHAO J Z, NARWANI G. Biomechanical analysis of hard tissue responses and injuries with finite element full human body model[C]//Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles. Bethesda: National Library of Medicine, 2007: 343-366.
    [38] ZHAO F D, POLLINTINE P, HOLE B D, et al. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone[J]. Bone, 2009, 44(2): 372-379. doi: 10.1016/j.bone.2008.10.048
    [39] MAGERL F, AEBI M, GERTZBEIN S D, et al. A comprehensive classification of thoracic and lumbar injuries[J]. European Spine Journal, 1994, 3(4): 184-201. doi: 10.1007/BF02221591
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  176
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-01-14
  • 网络出版日期:  2023-01-30
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答