留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分段自适应的机械臂力/位混合控制

殷文喆 练达芃 李凯悦 赵国伟

殷文喆,练达芃,李凯悦,等. 基于分段自适应的机械臂力/位混合控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):161-166 doi: 10.13700/j.bh.1001-5965.2022.0955
引用本文: 殷文喆,练达芃,李凯悦,等. 基于分段自适应的机械臂力/位混合控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):161-166 doi: 10.13700/j.bh.1001-5965.2022.0955
YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0955
Citation: YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0955

基于分段自适应的机械臂力/位混合控制

doi: 10.13700/j.bh.1001-5965.2022.0955
详细信息
    通讯作者:

    E-mail:zhaoguowei@cq5520.com

  • 中图分类号: V448.21;TP241.3

Manipulator force/position hybrid control based on staged adaptation

More Information
  • 摘要:

    空间操作任务对空间机械臂的柔顺控制品质要求不断提高,采用单一控制方法易造成较大的末端接触力超调或动态偏差。结合自适应阻抗与自适应导纳控制方法的优点,提出一种基于分段自适应的力/位混合控制方法。所提方法按空间实现力、位分控,并基于子空间期望末端加速度叠加的方式,求取关节控制力矩。力空间控制中,采用自适应导纳控制实现初始位置到目标位置的快速过渡,在接近目标位置时,采用自适应阻抗控制实现末端的高精度稳定控制;由于位置空间控制中期望力和接触力均为0,直接采用PD控制即可获得与自适应控制方法相同的效果。仿真结果表明:相较于自适应阻抗或自适应导纳单一控制,采用所提方法时接触力超调量和动态偏差更小,全程控制品质更优。

     

  • 图 1  控制空间示意

    Figure 1.  Schematic of control space

    图 2  分段自适应力/位混合控制流程

    Figure 2.  Flow of staged adaptive force/position hybrid control

    图 3  仿真环境示意

    Figure 3.  Schematic of simulation environment

    图 4  分段自适应力/位混合控制下机械臂末端位置曲线

    Figure 4.  Curves of manipulator end position by staged adaptive force/position hybrid control

    图 5  3种控制方法力误差变化曲线

    Figure 5.  Curves of force error by three control methods

    图 6  分段自适应力/位混合控制下关节控制力矩曲线

    Figure 6.  Curves of joint control torques by staged adaptive force/position hybrid control

    表  1  机械臂标准DH参数

    Table  1.   Standard DH parameters of manipulator

    连杆号 α/(°) l/mm d/mm
    1 90 0 660
    2 180 432 149
    3 90 0 60.0
    4 −90 0 433
    5 90 0 0
    6 0 0 56.3
     注:α为关节扭角;l为连杆长度;d为关节偏移。
    下载: 导出CSV

    表  2  机械臂惯性参数

    Table  2.   Inertia parameters of manipulator

    连杆号 χ/kg px/mm py/mm pz/mm Ixx/(kg·mm2 Iyy/(kg·mm2 Izz/(kg·mm2 Ixy/(kg·mm2 Iyz/(kg·mm2 Izx/(kg·mm2
    1 75.0 0 −323 −0.235 1.08×107 1.77×105 1.07×107 0 0 0
    2 50.8 −282 0 1.97 1.78×105 5.39×106 5.51×106 0 −4.51×104 0
    3 14.4 0 −0.917 142 4.74×105 4.76×105 1.23×104 0 0 0
    4 2.66 0 38.9 0 7.64×103 1.73×103 7.55×103 0 0 0
    5 0.484 0 0 14.4 282 294 102 0 0 0
    6 0.010 0 0 −8.13 0.938 0.938 0.124 0 0 0
     注:χ为连杆质量;pxpypz为连杆质心在由DH参数建立的连杆坐标系下的位置分量;IxxIyyIzzIxyIyzIzx为连杆在连杆坐标系的二阶惯量。
    下载: 导出CSV

    表  3  3种控制方法下接触力动态响应

    Table  3.   Dynamic response of contact force by three control methods

    控制方法 超调量/% 动态偏差/%
    自适应导纳控制 3.94 3.31
    自适应阻抗控制 51.5 0.30
    分段自适应力/位混合控制 3.92 0.30
    下载: 导出CSV
  • [1] 王宪伦. 不确定环境下机器人柔顺控制及可视化仿真的研究[D]. 济南: 山东大学, 2006.

    WANG X L. Research on robot compliance control and visual simulation in uncertain environment[D]. Jinan: Shandong University, 2006(in Chinese).
    [2] 殷跃红, 朱剑英, 尉忠信. 机器人力控制研究综述[J]. 南京麻豆精品秘 国产传媒学报, 1997, 29(2): 220-230.

    YIN Y H, ZHU J Y, WEI Z X. Force control of robot: An overview[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(2): 220-230(in Chinese).
    [3] RAIBERT M H, CRAIG J J. Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 126-133. doi: 10.1115/1.3139652
    [4] HOGAN N. Impedance control: An approach to manipulation: Part I—Theory[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 1-7. doi: 10.1115/1.3140702
    [5] HOGAN N. Impedance control: An approach to manipulation: Part II—Implementation[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 8-16. doi: 10.1115/1.3140713
    [6] HOGAN N. Impedance control: An approach to manipulation: Part III—Applications[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 17-24. doi: 10.1115/1.3140701
    [7] 李志雄. 七自由度协作机械臂避障与柔顺控制方法研究及仿真分析[D]. 南昌: 南昌大学, 2021: 8.

    LI Z X. Research and simulation analysis on obstacle avoidance and compliance control method of 7-DOF cooperative manipulator[D]. Nanchang: Nanchang University, 2021: 8(in Chinese).
    [8] SERAJI H. Adaptive admittance control: An approach to explicit force control in compliant motion[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 1994: 2705-2712.
    [9] SERAJI H, COLBAUGH R. Adaptive force-based impedance control[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 1993: 1537-1544.
    [10] JUNG S, HSIA T C, BONITZ R G. Force tracking impedance control for robot manipulators with an unknown environment: Theory, simulation, and experiment[J]. The International Journal of Robotics Research, 2001, 20(9): 765-774. doi: 10.1177/02783640122067651
    [11] ROVEDA L, VICENTINI F, PEDROCCHI N, et al. Force-tracking impedance control for manipulators mounted on compliant bases[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2014: 760-765.
    [12] WANG X B, ZHANG Y, LU C. Adaptive impedance control in uncertain environment for uncertain manipulator[C]//Proceedings of the 40th Chinese Control Conference. Piscataway: IEEE Press, 2021: 3937-3942.
    [13] 王邢波, 葛胜. 基于BP神经网络的腱驱动灵巧手的自适应阻抗控制[J]. 信息技术与网络安全, 2019, 38(4): 71-75.

    WANG X B, GE S. Self-adaptive impedance control of tendon-driven dexterous hands based on BP neural network[J]. Information Technology and Network Security, 2019, 38(4): 71-75(in Chinese).
    [14] 戚毅凡, 贾英宏, 赵宝山, 等. 基于改进神经网络的空间机械臂阻抗控制方法[J]. 中国空间科学技术, 2022, 42(2): 82-90.

    QI Y F, JIA Y H, ZHAO B S, et al. Impedance control of space manipulator based on improved neural network[J]. Chinese Space Science and Technology, 2022, 42(2): 82-90(in Chinese).
    [15] ZHANG X, SUN L T, KUANG Z A, et al. Learning variable impedance control via inverse reinforcement learning for force-related tasks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2225-2232. doi: 10.1109/LRA.2021.3061374
    [16] 王小冬. 基于力/位控制的机械臂纤维铺放技术研究[D]. 秦皇岛: 燕山大学, 2019: 25-27.

    WANG X D. Research on fiber placement technology of manipulator based on force/position control[D]. Qinhuangdao: Yanshan University, 2019: 25-27(in Chinese).
    [17] JUNG S, HSIA T C, BONITZ R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 474-483. doi: 10.1109/TCST.2004.824320
    [18] 彭光宇, 董洪波, 马斌. 两种DH模型的机器人运动学建模对比研究[J]. 机械研究与应用, 2019, 32(6): 62-65.

    PENG G Y, DONG H B, MA B. Comparative study of robot kinematics modeling based on two DH models[J]. Mechanical Research & Application, 2019, 32(6): 62-65(in Chinese).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  634
  • HTML全文浏览量:  299
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-03-29
  • 网络出版日期:  2023-04-07
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答